server-skynet-source-3rd-je.../include/jemalloc/internal/jemalloc_internal.h.in

1229 lines
34 KiB
C
Raw Normal View History

#ifndef JEMALLOC_INTERNAL_H
#define JEMALLOC_INTERNAL_H
#ifdef __cplusplus
extern "C" {
#endif
Refactor to support more varied testing. Refactor the test harness to support three types of tests: - unit: White box unit tests. These tests have full access to all internal jemalloc library symbols. Though in actuality all symbols are prefixed by jet_, macro-based name mangling abstracts this away from test code. - integration: Black box integration tests. These tests link with the installable shared jemalloc library, and with the exception of some utility code and configure-generated macro definitions, they have no access to jemalloc internals. - stress: Black box stress tests. These tests link with the installable shared jemalloc library, as well as with an internal allocator with symbols prefixed by jet_ (same as for unit tests) that can be used to allocate data structures that are internal to the test code. Move existing tests into test/{unit,integration}/ as appropriate. Split out internal parts of jemalloc_defs.h.in and put them in jemalloc_internal_defs.h.in. This reduces internals exposure to applications that #include <jemalloc/jemalloc.h>. Refactor jemalloc.h header generation so that a single header file results, and the prototypes can be used to generate jet_ prototypes for tests. Split jemalloc.h.in into multiple parts (jemalloc_defs.h.in, jemalloc_macros.h.in, jemalloc_protos.h.in, jemalloc_mangle.h.in) and use a shell script to generate a unified jemalloc.h at configure time. Change the default private namespace prefix from "" to "je_". Add missing private namespace mangling. Remove hard-coded private_namespace.h. Instead generate it and private_unnamespace.h from private_symbols.txt. Use similar logic for public symbols, which aids in name mangling for jet_ symbols. Add test_warn() and test_fail(). Replace existing exit(1) calls with test_fail() calls.
2013-12-01 07:25:42 +08:00
#include "jemalloc_internal_defs.h"
#include "jemalloc/internal/jemalloc_internal_decls.h"
#ifdef JEMALLOC_UTRACE
#include <sys/ktrace.h>
#endif
#define JEMALLOC_NO_DEMANGLE
Refactor to support more varied testing. Refactor the test harness to support three types of tests: - unit: White box unit tests. These tests have full access to all internal jemalloc library symbols. Though in actuality all symbols are prefixed by jet_, macro-based name mangling abstracts this away from test code. - integration: Black box integration tests. These tests link with the installable shared jemalloc library, and with the exception of some utility code and configure-generated macro definitions, they have no access to jemalloc internals. - stress: Black box stress tests. These tests link with the installable shared jemalloc library, as well as with an internal allocator with symbols prefixed by jet_ (same as for unit tests) that can be used to allocate data structures that are internal to the test code. Move existing tests into test/{unit,integration}/ as appropriate. Split out internal parts of jemalloc_defs.h.in and put them in jemalloc_internal_defs.h.in. This reduces internals exposure to applications that #include <jemalloc/jemalloc.h>. Refactor jemalloc.h header generation so that a single header file results, and the prototypes can be used to generate jet_ prototypes for tests. Split jemalloc.h.in into multiple parts (jemalloc_defs.h.in, jemalloc_macros.h.in, jemalloc_protos.h.in, jemalloc_mangle.h.in) and use a shell script to generate a unified jemalloc.h at configure time. Change the default private namespace prefix from "" to "je_". Add missing private namespace mangling. Remove hard-coded private_namespace.h. Instead generate it and private_unnamespace.h from private_symbols.txt. Use similar logic for public symbols, which aids in name mangling for jet_ symbols. Add test_warn() and test_fail(). Replace existing exit(1) calls with test_fail() calls.
2013-12-01 07:25:42 +08:00
#ifdef JEMALLOC_JET
# define JEMALLOC_N(n) jet_##n
# include "jemalloc/internal/public_namespace.h"
# define JEMALLOC_NO_RENAME
# include "../jemalloc@install_suffix@.h"
# undef JEMALLOC_NO_RENAME
Refactor to support more varied testing. Refactor the test harness to support three types of tests: - unit: White box unit tests. These tests have full access to all internal jemalloc library symbols. Though in actuality all symbols are prefixed by jet_, macro-based name mangling abstracts this away from test code. - integration: Black box integration tests. These tests link with the installable shared jemalloc library, and with the exception of some utility code and configure-generated macro definitions, they have no access to jemalloc internals. - stress: Black box stress tests. These tests link with the installable shared jemalloc library, as well as with an internal allocator with symbols prefixed by jet_ (same as for unit tests) that can be used to allocate data structures that are internal to the test code. Move existing tests into test/{unit,integration}/ as appropriate. Split out internal parts of jemalloc_defs.h.in and put them in jemalloc_internal_defs.h.in. This reduces internals exposure to applications that #include <jemalloc/jemalloc.h>. Refactor jemalloc.h header generation so that a single header file results, and the prototypes can be used to generate jet_ prototypes for tests. Split jemalloc.h.in into multiple parts (jemalloc_defs.h.in, jemalloc_macros.h.in, jemalloc_protos.h.in, jemalloc_mangle.h.in) and use a shell script to generate a unified jemalloc.h at configure time. Change the default private namespace prefix from "" to "je_". Add missing private namespace mangling. Remove hard-coded private_namespace.h. Instead generate it and private_unnamespace.h from private_symbols.txt. Use similar logic for public symbols, which aids in name mangling for jet_ symbols. Add test_warn() and test_fail(). Replace existing exit(1) calls with test_fail() calls.
2013-12-01 07:25:42 +08:00
#else
# define JEMALLOC_N(n) @private_namespace@##n
# include "../jemalloc@install_suffix@.h"
#endif
#include "jemalloc/internal/private_namespace.h"
static const bool config_debug =
#ifdef JEMALLOC_DEBUG
true
#else
false
#endif
;
static const bool have_dss =
#ifdef JEMALLOC_DSS
true
#else
false
#endif
;
static const bool config_fill =
#ifdef JEMALLOC_FILL
true
#else
false
#endif
;
static const bool config_lazy_lock =
#ifdef JEMALLOC_LAZY_LOCK
true
#else
false
#endif
;
static const char * const config_malloc_conf = JEMALLOC_CONFIG_MALLOC_CONF;
static const bool config_prof =
#ifdef JEMALLOC_PROF
true
#else
false
#endif
;
static const bool config_prof_libgcc =
#ifdef JEMALLOC_PROF_LIBGCC
true
#else
false
#endif
;
static const bool config_prof_libunwind =
#ifdef JEMALLOC_PROF_LIBUNWIND
true
#else
false
#endif
;
static const bool maps_coalesce =
#ifdef JEMALLOC_MAPS_COALESCE
true
#else
false
#endif
;
static const bool config_munmap =
#ifdef JEMALLOC_MUNMAP
true
#else
false
#endif
;
static const bool config_stats =
#ifdef JEMALLOC_STATS
true
#else
false
#endif
;
static const bool config_tcache =
#ifdef JEMALLOC_TCACHE
true
#else
false
#endif
;
static const bool config_tls =
#ifdef JEMALLOC_TLS
true
#else
false
#endif
;
static const bool config_utrace =
#ifdef JEMALLOC_UTRACE
true
#else
false
#endif
;
static const bool config_xmalloc =
#ifdef JEMALLOC_XMALLOC
true
#else
false
#endif
;
static const bool config_ivsalloc =
#ifdef JEMALLOC_IVSALLOC
true
#else
false
#endif
;
static const bool config_cache_oblivious =
#ifdef JEMALLOC_CACHE_OBLIVIOUS
true
#else
false
#endif
;
static const bool have_thp =
#ifdef JEMALLOC_THP
true
#else
false
#endif
;
#ifdef JEMALLOC_HAVE_SCHED_GETCPU
/* Currently percpu_arena depends on sched_getcpu. */
#define JEMALLOC_PERCPU_ARENA
#endif
static const bool have_percpu_arena =
#ifdef JEMALLOC_PERCPU_ARENA
true
#else
false
#endif
;
#if (defined(JEMALLOC_OSATOMIC) || defined(JEMALLOC_OSSPIN))
2011-03-19 10:10:31 +08:00
#include <libkern/OSAtomic.h>
#endif
#ifdef JEMALLOC_ZONE
#include <mach/mach_error.h>
#include <mach/mach_init.h>
#include <mach/vm_map.h>
#endif
#include "jemalloc/internal/ph.h"
Don't use compact red-black trees with the pgi compiler Some bug (either in the red-black tree code, or in the pgi compiler) seems to cause red-black trees to become unbalanced. This issue seems to go away if we don't use compact red-black trees. Since red-black trees don't seem to be used much anymore, I opted for what seems to be an easy fix here instead of digging in and trying to find the root cause of the bug. Some context in case it's helpful: I experienced a ton of segfaults while using pgi as Chapel's target compiler with jemalloc 4.0.4. The little bit of debugging I did pointed me somewhere deep in red-black tree manipulation, but I didn't get a chance to investigate further. It looks like 4.2.0 replaced most uses of red-black trees with pairing-heaps, which seems to avoid whatever bug I was hitting. However, `make check_unit` was still failing on the rb test, so I figured the core issue was just being masked. Here's the `make check_unit` failure: ```sh === test/unit/rb === test_rb_empty: pass tree_recurse:test/unit/rb.c:90: Failed assertion: (((_Bool) (((uintptr_t) (left_node)->link.rbn_right_red) & ((size_t)1)))) == (false) --> true != false: Node should be black test_rb_random:test/unit/rb.c:274: Failed assertion: (imbalances) == (0) --> 1 != 0: Tree is unbalanced tree_recurse:test/unit/rb.c:90: Failed assertion: (((_Bool) (((uintptr_t) (left_node)->link.rbn_right_red) & ((size_t)1)))) == (false) --> true != false: Node should be black test_rb_random:test/unit/rb.c:274: Failed assertion: (imbalances) == (0) --> 1 != 0: Tree is unbalanced node_remove:test/unit/rb.c:190: Failed assertion: (imbalances) == (0) --> 2 != 0: Tree is unbalanced <jemalloc>: test/unit/rb.c:43: Failed assertion: "pathp[-1].cmp < 0" test/test.sh: line 22: 12926 Aborted Test harness error ``` While starting to debug I saw the RB_COMPACT option and decided to check if turning that off resolved the bug. It seems to have fixed it (`make check_unit` passes and the segfaults under Chapel are gone) so it seems like on okay work-around. I'd imagine this has performance implications for red-black trees under pgi, but if they're not going to be used much anymore it's probably not a big deal.
2016-06-09 05:48:55 +08:00
#ifndef __PGI
#define RB_COMPACT
Don't use compact red-black trees with the pgi compiler Some bug (either in the red-black tree code, or in the pgi compiler) seems to cause red-black trees to become unbalanced. This issue seems to go away if we don't use compact red-black trees. Since red-black trees don't seem to be used much anymore, I opted for what seems to be an easy fix here instead of digging in and trying to find the root cause of the bug. Some context in case it's helpful: I experienced a ton of segfaults while using pgi as Chapel's target compiler with jemalloc 4.0.4. The little bit of debugging I did pointed me somewhere deep in red-black tree manipulation, but I didn't get a chance to investigate further. It looks like 4.2.0 replaced most uses of red-black trees with pairing-heaps, which seems to avoid whatever bug I was hitting. However, `make check_unit` was still failing on the rb test, so I figured the core issue was just being masked. Here's the `make check_unit` failure: ```sh === test/unit/rb === test_rb_empty: pass tree_recurse:test/unit/rb.c:90: Failed assertion: (((_Bool) (((uintptr_t) (left_node)->link.rbn_right_red) & ((size_t)1)))) == (false) --> true != false: Node should be black test_rb_random:test/unit/rb.c:274: Failed assertion: (imbalances) == (0) --> 1 != 0: Tree is unbalanced tree_recurse:test/unit/rb.c:90: Failed assertion: (((_Bool) (((uintptr_t) (left_node)->link.rbn_right_red) & ((size_t)1)))) == (false) --> true != false: Node should be black test_rb_random:test/unit/rb.c:274: Failed assertion: (imbalances) == (0) --> 1 != 0: Tree is unbalanced node_remove:test/unit/rb.c:190: Failed assertion: (imbalances) == (0) --> 2 != 0: Tree is unbalanced <jemalloc>: test/unit/rb.c:43: Failed assertion: "pathp[-1].cmp < 0" test/test.sh: line 22: 12926 Aborted Test harness error ``` While starting to debug I saw the RB_COMPACT option and decided to check if turning that off resolved the bug. It seems to have fixed it (`make check_unit` passes and the segfaults under Chapel are gone) so it seems like on okay work-around. I'd imagine this has performance implications for red-black trees under pgi, but if they're not going to be used much anymore it's probably not a big deal.
2016-06-09 05:48:55 +08:00
#endif
2010-02-12 06:45:59 +08:00
#include "jemalloc/internal/rb.h"
#include "jemalloc/internal/qr.h"
#include "jemalloc/internal/ql.h"
/*
* jemalloc can conceptually be broken into components (arena, tcache, etc.),
* but there are circular dependencies that cannot be broken without
* substantial performance degradation.
*
* Historically, we dealt with this by each header into four sections (types,
* structs, externs, and inlines), and included each header file multiple times
* in this file, picking out the portion we want on each pass using the
* following #defines:
* JEMALLOC_H_TYPES : Preprocessor-defined constants and psuedo-opaque data
* types.
* JEMALLOC_H_STRUCTS : Data structures.
* JEMALLOC_H_EXTERNS : Extern data declarations and function prototypes.
* JEMALLOC_H_INLINES : Inline functions.
*
* We're moving toward a world in which the dependencies are explicit; each file
* will #include the headers it depends on (rather than relying on them being
* implicitly available via this file including every header file in the
* project).
*
* We're now in an intermediate state: we've broken up the header files to avoid
* having to include each one multiple times, but have not yet moved the
* dependency information into the header files (i.e. we still rely on the
* ordering in this file to ensure all a header's dependencies are available in
* its translation unit). Each component is now broken up into multiple header
* files, corresponding to the sections above (e.g. instead of "tsd.h", we now
* have "tsd_types.h", "tsd_structs.h", "tsd_externs.h", "tsd_inlines.h").
*
* Those files which have been converted to explicitly include their
* inter-component dependencies are now in the initial HERMETIC HEADERS
* section. These headers may still rely on this file for system headers and
* global jemalloc headers, however.
*/
2013-12-06 13:43:46 +08:00
#include "jemalloc/internal/jemalloc_internal_macros.h"
/******************************************************************************/
/* HERMETIC HEADERS */
/******************************************************************************/
#include "jemalloc/internal/assert.h"
#include "jemalloc/internal/atomic.h"
#include "jemalloc/internal/bit_util.h"
#include "jemalloc/internal/malloc_io.h"
#include "jemalloc/internal/util.h"
/******************************************************************************/
/* TYPES */
/******************************************************************************/
/* Page size index type. */
typedef unsigned pszind_t;
/* Size class index type. */
typedef unsigned szind_t;
/* Processor / core id type. */
typedef int malloc_cpuid_t;
/*
* Flags bits:
*
* a: arena
* t: tcache
* 0: unused
* z: zero
* n: alignment
*
* aaaaaaaa aaaatttt tttttttt 0znnnnnn
*/
#define MALLOCX_ARENA_BITS 12
#define MALLOCX_TCACHE_BITS 12
#define MALLOCX_LG_ALIGN_BITS 6
#define MALLOCX_ARENA_SHIFT 20
#define MALLOCX_TCACHE_SHIFT 8
#define MALLOCX_ARENA_MASK \
(((1 << MALLOCX_ARENA_BITS) - 1) << MALLOCX_ARENA_SHIFT)
/* NB: Arena index bias decreases the maximum number of arenas by 1. */
#define MALLOCX_ARENA_MAX ((1 << MALLOCX_ARENA_BITS) - 2)
#define MALLOCX_TCACHE_MASK \
(((1 << MALLOCX_TCACHE_BITS) - 1) << MALLOCX_TCACHE_SHIFT)
#define MALLOCX_TCACHE_MAX ((1 << MALLOCX_TCACHE_BITS) - 3)
#define MALLOCX_LG_ALIGN_MASK ((1 << MALLOCX_LG_ALIGN_BITS) - 1)
/* Use MALLOCX_ALIGN_GET() if alignment may not be specified in flags. */
#define MALLOCX_ALIGN_GET_SPECIFIED(flags) \
(ZU(1) << (flags & MALLOCX_LG_ALIGN_MASK))
#define MALLOCX_ALIGN_GET(flags) \
(MALLOCX_ALIGN_GET_SPECIFIED(flags) & (SIZE_T_MAX-1))
#define MALLOCX_ZERO_GET(flags) \
((bool)(flags & MALLOCX_ZERO))
#define MALLOCX_TCACHE_GET(flags) \
(((unsigned)((flags & MALLOCX_TCACHE_MASK) >> MALLOCX_TCACHE_SHIFT)) - 2)
#define MALLOCX_ARENA_GET(flags) \
(((unsigned)(((unsigned)flags) >> MALLOCX_ARENA_SHIFT)) - 1)
/* Smallest size class to support. */
#define TINY_MIN (1U << LG_TINY_MIN)
/*
* Minimum allocation alignment is 2^LG_QUANTUM bytes (ignoring tiny size
* classes).
*/
#ifndef LG_QUANTUM
# if (defined(__i386__) || defined(_M_IX86))
# define LG_QUANTUM 4
# endif
# ifdef __ia64__
# define LG_QUANTUM 4
# endif
# ifdef __alpha__
# define LG_QUANTUM 4
# endif
# if (defined(__sparc64__) || defined(__sparcv9) || defined(__sparc_v9__))
# define LG_QUANTUM 4
# endif
# if (defined(__amd64__) || defined(__x86_64__) || defined(_M_X64))
# define LG_QUANTUM 4
# endif
# ifdef __arm__
# define LG_QUANTUM 3
# endif
# ifdef __aarch64__
# define LG_QUANTUM 4
# endif
# ifdef __hppa__
# define LG_QUANTUM 4
# endif
# ifdef __mips__
# define LG_QUANTUM 3
# endif
# ifdef __or1k__
# define LG_QUANTUM 3
# endif
# ifdef __powerpc__
# define LG_QUANTUM 4
# endif
# ifdef __riscv__
# define LG_QUANTUM 4
# endif
# ifdef __s390__
# define LG_QUANTUM 4
# endif
# ifdef __SH4__
# define LG_QUANTUM 4
# endif
# ifdef __tile__
# define LG_QUANTUM 4
# endif
# ifdef __le32__
# define LG_QUANTUM 4
# endif
# ifndef LG_QUANTUM
# error "Unknown minimum alignment for architecture; specify via "
"--with-lg-quantum"
# endif
#endif
#define QUANTUM ((size_t)(1U << LG_QUANTUM))
#define QUANTUM_MASK (QUANTUM - 1)
/* Return the smallest quantum multiple that is >= a. */
#define QUANTUM_CEILING(a) \
(((a) + QUANTUM_MASK) & ~QUANTUM_MASK)
#define LONG ((size_t)(1U << LG_SIZEOF_LONG))
#define LONG_MASK (LONG - 1)
/* Return the smallest long multiple that is >= a. */
#define LONG_CEILING(a) \
(((a) + LONG_MASK) & ~LONG_MASK)
#define SIZEOF_PTR (1U << LG_SIZEOF_PTR)
#define PTR_MASK (SIZEOF_PTR - 1)
/* Return the smallest (void *) multiple that is >= a. */
#define PTR_CEILING(a) \
(((a) + PTR_MASK) & ~PTR_MASK)
/*
* Maximum size of L1 cache line. This is used to avoid cache line aliasing.
* In addition, this controls the spacing of cacheline-spaced size classes.
*
* CACHELINE cannot be based on LG_CACHELINE because __declspec(align()) can
* only handle raw constants.
*/
#define LG_CACHELINE 6
#define CACHELINE 64
#define CACHELINE_MASK (CACHELINE - 1)
/* Return the smallest cacheline multiple that is >= s. */
#define CACHELINE_CEILING(s) \
(((s) + CACHELINE_MASK) & ~CACHELINE_MASK)
/* Return the nearest aligned address at or below a. */
#define ALIGNMENT_ADDR2BASE(a, alignment) \
((void *)((uintptr_t)(a) & ((~(alignment)) + 1)))
/* Return the offset between a and the nearest aligned address at or below a. */
#define ALIGNMENT_ADDR2OFFSET(a, alignment) \
((size_t)((uintptr_t)(a) & (alignment - 1)))
/* Return the smallest alignment multiple that is >= s. */
#define ALIGNMENT_CEILING(s, alignment) \
(((s) + (alignment - 1)) & ((~(alignment)) + 1))
2014-12-09 06:40:14 +08:00
/* Declare a variable-length array. */
#if __STDC_VERSION__ < 199901L
# ifdef _MSC_VER
# include <malloc.h>
# define alloca _alloca
# else
# ifdef JEMALLOC_HAS_ALLOCA_H
# include <alloca.h>
# else
# include <stdlib.h>
# endif
# endif
# define VARIABLE_ARRAY(type, name, count) \
type *name = alloca(sizeof(type) * (count))
#else
# define VARIABLE_ARRAY(type, name, count) type name[(count)]
#endif
#include "jemalloc/internal/nstime_types.h"
#include "jemalloc/internal/spin_types.h"
#include "jemalloc/internal/prng_types.h"
#include "jemalloc/internal/ticker_types.h"
#include "jemalloc/internal/ckh_types.h"
#include "jemalloc/internal/size_classes.h"
#include "jemalloc/internal/smoothstep.h"
#include "jemalloc/internal/stats_types.h"
#include "jemalloc/internal/ctl_types.h"
#include "jemalloc/internal/witness_types.h"
#include "jemalloc/internal/mutex_types.h"
#include "jemalloc/internal/tsd_types.h"
#include "jemalloc/internal/extent_types.h"
#include "jemalloc/internal/extent_dss_types.h"
#include "jemalloc/internal/base_types.h"
#include "jemalloc/internal/arena_types.h"
#include "jemalloc/internal/bitmap_types.h"
#include "jemalloc/internal/rtree_types.h"
#include "jemalloc/internal/pages_types.h"
#include "jemalloc/internal/tcache_types.h"
#include "jemalloc/internal/prof_types.h"
/******************************************************************************/
/* STRUCTS */
/******************************************************************************/
#include "jemalloc/internal/nstime_structs.h"
#include "jemalloc/internal/spin_structs.h"
#include "jemalloc/internal/ticker_structs.h"
#include "jemalloc/internal/ckh_structs.h"
#include "jemalloc/internal/witness_structs.h"
#include "jemalloc/internal/mutex_structs.h"
#include "jemalloc/internal/stats_structs.h"
#include "jemalloc/internal/ctl_structs.h"
#include "jemalloc/internal/bitmap_structs.h"
#include "jemalloc/internal/arena_structs_a.h"
#include "jemalloc/internal/extent_structs.h"
#include "jemalloc/internal/extent_dss_structs.h"
#include "jemalloc/internal/base_structs.h"
#include "jemalloc/internal/prof_structs.h"
#include "jemalloc/internal/arena_structs_b.h"
#include "jemalloc/internal/rtree_structs.h"
#include "jemalloc/internal/tcache_structs.h"
#include "jemalloc/internal/tsd_structs.h"
/******************************************************************************/
/* EXTERNS */
/******************************************************************************/
extern bool opt_abort;
extern const char *opt_junk;
extern bool opt_junk_alloc;
extern bool opt_junk_free;
extern bool opt_utrace;
extern bool opt_xmalloc;
extern bool opt_zero;
extern unsigned opt_narenas;
/* Number of CPUs. */
extern unsigned ncpus;
/* Number of arenas used for automatic multiplexing of threads and arenas. */
extern unsigned narenas_auto;
/*
* Arenas that are used to service external requests. Not all elements of the
* arenas array are necessarily used; arenas are created lazily as needed.
*/
extern atomic_p_t arenas[];
/*
* pind2sz_tab encodes the same information as could be computed by
* pind2sz_compute().
*/
extern size_t const pind2sz_tab[NPSIZES+1];
/*
* index2size_tab encodes the same information as could be computed (at
* unacceptable cost in some code paths) by index2size_compute().
*/
extern size_t const index2size_tab[NSIZES];
/*
* size2index_tab is a compact lookup table that rounds request sizes up to
* size classes. In order to reduce cache footprint, the table is compressed,
* and all accesses are via size2index().
*/
extern uint8_t const size2index_tab[];
void *a0malloc(size_t size);
void a0dalloc(void *ptr);
void *bootstrap_malloc(size_t size);
void *bootstrap_calloc(size_t num, size_t size);
void bootstrap_free(void *ptr);
void arena_set(unsigned ind, arena_t *arena);
unsigned narenas_total_get(void);
arena_t *arena_init(tsdn_t *tsdn, unsigned ind, extent_hooks_t *extent_hooks);
arena_tdata_t *arena_tdata_get_hard(tsd_t *tsd, unsigned ind);
arena_t *arena_choose_hard(tsd_t *tsd, bool internal);
void arena_migrate(tsd_t *tsd, unsigned oldind, unsigned newind);
void iarena_cleanup(tsd_t *tsd);
void arena_cleanup(tsd_t *tsd);
void arenas_tdata_cleanup(tsd_t *tsd);
void jemalloc_prefork(void);
void jemalloc_postfork_parent(void);
void jemalloc_postfork_child(void);
#include "jemalloc/internal/nstime_externs.h"
#include "jemalloc/internal/ckh_externs.h"
#include "jemalloc/internal/stats_externs.h"
#include "jemalloc/internal/ctl_externs.h"
#include "jemalloc/internal/witness_externs.h"
#include "jemalloc/internal/mutex_externs.h"
#include "jemalloc/internal/bitmap_externs.h"
#include "jemalloc/internal/extent_externs.h"
#include "jemalloc/internal/extent_dss_externs.h"
#include "jemalloc/internal/extent_mmap_externs.h"
#include "jemalloc/internal/base_externs.h"
#include "jemalloc/internal/arena_externs.h"
#include "jemalloc/internal/rtree_externs.h"
#include "jemalloc/internal/pages_externs.h"
#include "jemalloc/internal/large_externs.h"
#include "jemalloc/internal/tcache_externs.h"
#include "jemalloc/internal/prof_externs.h"
#include "jemalloc/internal/tsd_externs.h"
/******************************************************************************/
/* INLINES */
/******************************************************************************/
#include "jemalloc/internal/spin_inlines.h"
#include "jemalloc/internal/prng_inlines.h"
#include "jemalloc/internal/ticker_inlines.h"
#include "jemalloc/internal/tsd_inlines.h"
#include "jemalloc/internal/witness_inlines.h"
#include "jemalloc/internal/mutex_inlines.h"
#ifndef JEMALLOC_ENABLE_INLINE
pszind_t psz2ind(size_t psz);
size_t pind2sz_compute(pszind_t pind);
size_t pind2sz_lookup(pszind_t pind);
size_t pind2sz(pszind_t pind);
size_t psz2u(size_t psz);
szind_t size2index_compute(size_t size);
szind_t size2index_lookup(size_t size);
szind_t size2index(size_t size);
size_t index2size_compute(szind_t index);
size_t index2size_lookup(szind_t index);
size_t index2size(szind_t index);
size_t s2u_compute(size_t size);
size_t s2u_lookup(size_t size);
size_t s2u(size_t size);
size_t sa2u(size_t size, size_t alignment);
arena_t *arena_choose_impl(tsd_t *tsd, arena_t *arena, bool internal);
arena_t *arena_choose(tsd_t *tsd, arena_t *arena);
arena_t *arena_ichoose(tsd_t *tsd, arena_t *arena);
arena_tdata_t *arena_tdata_get(tsd_t *tsd, unsigned ind,
bool refresh_if_missing);
arena_t *arena_get(tsdn_t *tsdn, unsigned ind, bool init_if_missing);
ticker_t *decay_ticker_get(tsd_t *tsd, unsigned ind);
malloc_cpuid_t malloc_getcpu(void);
unsigned percpu_arena_choose(void);
unsigned percpu_arena_ind_limit(void);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_C_))
JEMALLOC_ALWAYS_INLINE pszind_t
psz2ind(size_t psz) {
if (unlikely(psz > LARGE_MAXCLASS)) {
return NPSIZES;
}
{
pszind_t x = lg_floor((psz<<1)-1);
pszind_t shift = (x < LG_SIZE_CLASS_GROUP + LG_PAGE) ? 0 : x -
(LG_SIZE_CLASS_GROUP + LG_PAGE);
pszind_t grp = shift << LG_SIZE_CLASS_GROUP;
pszind_t lg_delta = (x < LG_SIZE_CLASS_GROUP + LG_PAGE + 1) ?
LG_PAGE : x - LG_SIZE_CLASS_GROUP - 1;
size_t delta_inverse_mask = ZD(-1) << lg_delta;
pszind_t mod = ((((psz-1) & delta_inverse_mask) >> lg_delta)) &
((ZU(1) << LG_SIZE_CLASS_GROUP) - 1);
pszind_t ind = grp + mod;
return ind;
}
}
JEMALLOC_INLINE size_t
pind2sz_compute(pszind_t pind) {
if (unlikely(pind == NPSIZES)) {
return LARGE_MAXCLASS + PAGE;
}
{
size_t grp = pind >> LG_SIZE_CLASS_GROUP;
size_t mod = pind & ((ZU(1) << LG_SIZE_CLASS_GROUP) - 1);
size_t grp_size_mask = ~((!!grp)-1);
size_t grp_size = ((ZU(1) << (LG_PAGE +
(LG_SIZE_CLASS_GROUP-1))) << grp) & grp_size_mask;
size_t shift = (grp == 0) ? 1 : grp;
size_t lg_delta = shift + (LG_PAGE-1);
size_t mod_size = (mod+1) << lg_delta;
size_t sz = grp_size + mod_size;
return sz;
}
}
JEMALLOC_INLINE size_t
pind2sz_lookup(pszind_t pind) {
size_t ret = (size_t)pind2sz_tab[pind];
assert(ret == pind2sz_compute(pind));
return ret;
}
JEMALLOC_INLINE size_t
pind2sz(pszind_t pind) {
assert(pind < NPSIZES+1);
return pind2sz_lookup(pind);
}
JEMALLOC_INLINE size_t
psz2u(size_t psz) {
if (unlikely(psz > LARGE_MAXCLASS)) {
return LARGE_MAXCLASS + PAGE;
}
{
size_t x = lg_floor((psz<<1)-1);
size_t lg_delta = (x < LG_SIZE_CLASS_GROUP + LG_PAGE + 1) ?
LG_PAGE : x - LG_SIZE_CLASS_GROUP - 1;
size_t delta = ZU(1) << lg_delta;
size_t delta_mask = delta - 1;
size_t usize = (psz + delta_mask) & ~delta_mask;
return usize;
}
}
JEMALLOC_INLINE szind_t
size2index_compute(size_t size) {
if (unlikely(size > LARGE_MAXCLASS)) {
return NSIZES;
}
#if (NTBINS != 0)
if (size <= (ZU(1) << LG_TINY_MAXCLASS)) {
szind_t lg_tmin = LG_TINY_MAXCLASS - NTBINS + 1;
szind_t lg_ceil = lg_floor(pow2_ceil_zu(size));
return (lg_ceil < lg_tmin ? 0 : lg_ceil - lg_tmin);
}
#endif
{
szind_t x = lg_floor((size<<1)-1);
szind_t shift = (x < LG_SIZE_CLASS_GROUP + LG_QUANTUM) ? 0 :
x - (LG_SIZE_CLASS_GROUP + LG_QUANTUM);
szind_t grp = shift << LG_SIZE_CLASS_GROUP;
szind_t lg_delta = (x < LG_SIZE_CLASS_GROUP + LG_QUANTUM + 1)
? LG_QUANTUM : x - LG_SIZE_CLASS_GROUP - 1;
size_t delta_inverse_mask = ZD(-1) << lg_delta;
szind_t mod = ((((size-1) & delta_inverse_mask) >> lg_delta)) &
((ZU(1) << LG_SIZE_CLASS_GROUP) - 1);
szind_t index = NTBINS + grp + mod;
return index;
}
}
JEMALLOC_ALWAYS_INLINE szind_t
size2index_lookup(size_t size) {
assert(size <= LOOKUP_MAXCLASS);
{
szind_t ret = (size2index_tab[(size-1) >> LG_TINY_MIN]);
assert(ret == size2index_compute(size));
return ret;
}
}
JEMALLOC_ALWAYS_INLINE szind_t
size2index(size_t size) {
assert(size > 0);
if (likely(size <= LOOKUP_MAXCLASS)) {
return size2index_lookup(size);
}
return size2index_compute(size);
}
JEMALLOC_INLINE size_t
index2size_compute(szind_t index) {
#if (NTBINS > 0)
if (index < NTBINS) {
return (ZU(1) << (LG_TINY_MAXCLASS - NTBINS + 1 + index));
}
#endif
{
size_t reduced_index = index - NTBINS;
size_t grp = reduced_index >> LG_SIZE_CLASS_GROUP;
size_t mod = reduced_index & ((ZU(1) << LG_SIZE_CLASS_GROUP) -
1);
size_t grp_size_mask = ~((!!grp)-1);
size_t grp_size = ((ZU(1) << (LG_QUANTUM +
(LG_SIZE_CLASS_GROUP-1))) << grp) & grp_size_mask;
size_t shift = (grp == 0) ? 1 : grp;
size_t lg_delta = shift + (LG_QUANTUM-1);
size_t mod_size = (mod+1) << lg_delta;
size_t usize = grp_size + mod_size;
return usize;
}
}
JEMALLOC_ALWAYS_INLINE size_t
index2size_lookup(szind_t index) {
size_t ret = (size_t)index2size_tab[index];
assert(ret == index2size_compute(index));
return ret;
}
JEMALLOC_ALWAYS_INLINE size_t
index2size(szind_t index) {
assert(index < NSIZES);
return index2size_lookup(index);
}
JEMALLOC_ALWAYS_INLINE size_t
s2u_compute(size_t size) {
if (unlikely(size > LARGE_MAXCLASS)) {
return 0;
}
#if (NTBINS > 0)
if (size <= (ZU(1) << LG_TINY_MAXCLASS)) {
size_t lg_tmin = LG_TINY_MAXCLASS - NTBINS + 1;
size_t lg_ceil = lg_floor(pow2_ceil_zu(size));
return (lg_ceil < lg_tmin ? (ZU(1) << lg_tmin) :
(ZU(1) << lg_ceil));
}
#endif
{
size_t x = lg_floor((size<<1)-1);
size_t lg_delta = (x < LG_SIZE_CLASS_GROUP + LG_QUANTUM + 1)
? LG_QUANTUM : x - LG_SIZE_CLASS_GROUP - 1;
size_t delta = ZU(1) << lg_delta;
size_t delta_mask = delta - 1;
size_t usize = (size + delta_mask) & ~delta_mask;
return usize;
}
}
JEMALLOC_ALWAYS_INLINE size_t
s2u_lookup(size_t size) {
size_t ret = index2size_lookup(size2index_lookup(size));
assert(ret == s2u_compute(size));
return ret;
}
/*
* Compute usable size that would result from allocating an object with the
* specified size.
*/
JEMALLOC_ALWAYS_INLINE size_t
s2u(size_t size) {
assert(size > 0);
if (likely(size <= LOOKUP_MAXCLASS)) {
return s2u_lookup(size);
}
return s2u_compute(size);
}
/*
* Compute usable size that would result from allocating an object with the
* specified size and alignment.
*/
JEMALLOC_ALWAYS_INLINE size_t
sa2u(size_t size, size_t alignment) {
size_t usize;
assert(alignment != 0 && ((alignment - 1) & alignment) == 0);
/* Try for a small size class. */
if (size <= SMALL_MAXCLASS && alignment < PAGE) {
/*
* Round size up to the nearest multiple of alignment.
*
* This done, we can take advantage of the fact that for each
* small size class, every object is aligned at the smallest
* power of two that is non-zero in the base two representation
* of the size. For example:
*
* Size | Base 2 | Minimum alignment
* -----+----------+------------------
* 96 | 1100000 | 32
* 144 | 10100000 | 32
* 192 | 11000000 | 64
*/
usize = s2u(ALIGNMENT_CEILING(size, alignment));
if (usize < LARGE_MINCLASS) {
return usize;
}
}
2016-06-01 05:50:21 +08:00
/* Large size class. Beware of overflow. */
if (unlikely(alignment > LARGE_MAXCLASS)) {
return 0;
}
/* Make sure result is a large size class. */
if (size <= LARGE_MINCLASS) {
usize = LARGE_MINCLASS;
} else {
usize = s2u(size);
if (usize < size) {
/* size_t overflow. */
return 0;
}
}
/*
2016-06-01 05:50:21 +08:00
* Calculate the multi-page mapping that large_palloc() would need in
* order to guarantee the alignment.
*/
if (usize + large_pad + PAGE_CEILING(alignment) - PAGE < usize) {
/* size_t overflow. */
return 0;
}
return usize;
}
JEMALLOC_ALWAYS_INLINE malloc_cpuid_t
malloc_getcpu(void) {
assert(have_percpu_arena);
#if defined(JEMALLOC_HAVE_SCHED_GETCPU)
return (malloc_cpuid_t)sched_getcpu();
#else
not_reached();
return -1;
#endif
}
/* Return the chosen arena index based on current cpu. */
JEMALLOC_ALWAYS_INLINE unsigned
percpu_arena_choose(void) {
unsigned arena_ind;
assert(have_percpu_arena && (percpu_arena_mode != percpu_arena_disabled));
malloc_cpuid_t cpuid = malloc_getcpu();
assert(cpuid >= 0);
if ((percpu_arena_mode == percpu_arena) ||
((unsigned)cpuid < ncpus / 2)) {
arena_ind = cpuid;
} else {
assert(percpu_arena_mode == per_phycpu_arena);
/* Hyper threads on the same physical CPU share arena. */
arena_ind = cpuid - ncpus / 2;
}
return arena_ind;
}
/* Return the limit of percpu auto arena range, i.e. arenas[0...ind_limit). */
JEMALLOC_ALWAYS_INLINE unsigned
percpu_arena_ind_limit(void) {
assert(have_percpu_arena && (percpu_arena_mode != percpu_arena_disabled));
if (percpu_arena_mode == per_phycpu_arena && ncpus > 1) {
if (ncpus % 2) {
/* This likely means a misconfig. */
return ncpus / 2 + 1;
}
return ncpus / 2;
} else {
return ncpus;
}
}
JEMALLOC_INLINE arena_tdata_t *
arena_tdata_get(tsd_t *tsd, unsigned ind, bool refresh_if_missing) {
arena_tdata_t *tdata;
arena_tdata_t *arenas_tdata = tsd_arenas_tdata_get(tsd);
if (unlikely(arenas_tdata == NULL)) {
/* arenas_tdata hasn't been initialized yet. */
return arena_tdata_get_hard(tsd, ind);
}
if (unlikely(ind >= tsd_narenas_tdata_get(tsd))) {
/*
* ind is invalid, cache is old (too small), or tdata to be
* initialized.
*/
return (refresh_if_missing ? arena_tdata_get_hard(tsd, ind) :
NULL);
}
tdata = &arenas_tdata[ind];
if (likely(tdata != NULL) || !refresh_if_missing) {
return tdata;
}
return arena_tdata_get_hard(tsd, ind);
}
JEMALLOC_INLINE arena_t *
arena_get(tsdn_t *tsdn, unsigned ind, bool init_if_missing) {
arena_t *ret;
assert(ind <= MALLOCX_ARENA_MAX);
ret = (arena_t *)atomic_load_p(&arenas[ind], ATOMIC_ACQUIRE);
if (unlikely(ret == NULL)) {
if (init_if_missing) {
ret = arena_init(tsdn, ind,
(extent_hooks_t *)&extent_hooks_default);
}
}
return ret;
}
JEMALLOC_INLINE ticker_t *
decay_ticker_get(tsd_t *tsd, unsigned ind) {
arena_tdata_t *tdata;
tdata = arena_tdata_get(tsd, ind, true);
if (unlikely(tdata == NULL)) {
return NULL;
}
return &tdata->decay_ticker;
}
#endif
#include "jemalloc/internal/rtree_inlines.h"
#include "jemalloc/internal/base_inlines.h"
#include "jemalloc/internal/bitmap_inlines.h"
/*
* Include portions of arena code interleaved with tcache code in order to
* resolve circular dependencies.
*/
#include "jemalloc/internal/prof_inlines_a.h"
#include "jemalloc/internal/arena_inlines_a.h"
#include "jemalloc/internal/extent_inlines.h"
#ifndef JEMALLOC_ENABLE_INLINE
extent_t *iealloc(tsdn_t *tsdn, const void *ptr);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_C_))
/* Choose an arena based on a per-thread value. */
JEMALLOC_INLINE arena_t *
arena_choose_impl(tsd_t *tsd, arena_t *arena, bool internal) {
arena_t *ret;
if (arena != NULL) {
return arena;
}
ret = internal ? tsd_iarena_get(tsd) : tsd_arena_get(tsd);
if (unlikely(ret == NULL)) {
ret = arena_choose_hard(tsd, internal);
}
assert(ret != NULL);
/*
* Note that for percpu arena, if the current arena is outside of the
* auto percpu arena range, (i.e. thread is assigned to a manually
* managed arena), then percpu arena is skipped.
*/
if (have_percpu_arena && (percpu_arena_mode != percpu_arena_disabled) &&
(arena_ind_get(ret) < percpu_arena_ind_limit()) &&
(ret->last_thd != tsd_tsdn(tsd))) {
unsigned ind = percpu_arena_choose();
if (arena_ind_get(ret) != ind) {
percpu_arena_update(tsd, ind);
ret = tsd_arena_get(tsd);
}
ret->last_thd = tsd_tsdn(tsd);
}
return ret;
}
JEMALLOC_INLINE arena_t *
arena_choose(tsd_t *tsd, arena_t *arena) {
return arena_choose_impl(tsd, arena, false);
}
JEMALLOC_INLINE arena_t *
arena_ichoose(tsd_t *tsd, arena_t *arena) {
return arena_choose_impl(tsd, arena, true);
}
JEMALLOC_ALWAYS_INLINE extent_t *
iealloc(tsdn_t *tsdn, const void *ptr) {
rtree_ctx_t rtree_ctx_fallback;
rtree_ctx_t *rtree_ctx = tsdn_rtree_ctx(tsdn, &rtree_ctx_fallback);
return rtree_extent_read(tsdn, &extents_rtree, rtree_ctx,
(uintptr_t)ptr, true);
}
#endif
#include "jemalloc/internal/tcache_inlines.h"
#include "jemalloc/internal/arena_inlines_b.h"
#include "jemalloc/internal/hash_inlines.h"
#ifndef JEMALLOC_ENABLE_INLINE
arena_t *iaalloc(tsdn_t *tsdn, const void *ptr);
size_t isalloc(tsdn_t *tsdn, const void *ptr);
void *iallocztm(tsdn_t *tsdn, size_t size, szind_t ind, bool zero,
tcache_t *tcache, bool is_internal, arena_t *arena, bool slow_path);
void *ialloc(tsd_t *tsd, size_t size, szind_t ind, bool zero,
bool slow_path);
void *ipallocztm(tsdn_t *tsdn, size_t usize, size_t alignment, bool zero,
tcache_t *tcache, bool is_internal, arena_t *arena);
void *ipalloct(tsdn_t *tsdn, size_t usize, size_t alignment, bool zero,
tcache_t *tcache, arena_t *arena);
void *ipalloc(tsd_t *tsd, size_t usize, size_t alignment, bool zero);
size_t ivsalloc(tsdn_t *tsdn, const void *ptr);
void idalloctm(tsdn_t *tsdn, void *ptr, tcache_t *tcache, bool is_internal,
bool slow_path);
void idalloc(tsd_t *tsd, void *ptr);
void isdalloct(tsdn_t *tsdn, void *ptr, size_t size, tcache_t *tcache,
bool slow_path);
void *iralloct_realign(tsdn_t *tsdn, void *ptr, size_t oldsize, size_t size,
size_t extra, size_t alignment, bool zero, tcache_t *tcache,
arena_t *arena);
void *iralloct(tsdn_t *tsdn, void *ptr, size_t oldsize, size_t size,
size_t alignment, bool zero, tcache_t *tcache, arena_t *arena);
void *iralloc(tsd_t *tsd, void *ptr, size_t oldsize, size_t size,
size_t alignment, bool zero);
bool ixalloc(tsdn_t *tsdn, void *ptr, size_t oldsize, size_t size, size_t extra,
size_t alignment, bool zero);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_C_))
JEMALLOC_ALWAYS_INLINE arena_t *
iaalloc(tsdn_t *tsdn, const void *ptr) {
assert(ptr != NULL);
return arena_aalloc(tsdn, ptr);
}
JEMALLOC_ALWAYS_INLINE size_t
isalloc(tsdn_t *tsdn, const void *ptr) {
assert(ptr != NULL);
return arena_salloc(tsdn, ptr);
}
JEMALLOC_ALWAYS_INLINE void *
iallocztm(tsdn_t *tsdn, size_t size, szind_t ind, bool zero, tcache_t *tcache,
bool is_internal, arena_t *arena, bool slow_path) {
void *ret;
assert(size != 0);
assert(!is_internal || tcache == NULL);
assert(!is_internal || arena == NULL || arena_ind_get(arena) <
narenas_auto);
witness_assert_depth_to_rank(tsdn, WITNESS_RANK_CORE, 0);
ret = arena_malloc(tsdn, arena, size, ind, zero, tcache, slow_path);
if (config_stats && is_internal && likely(ret != NULL)) {
arena_internal_add(iaalloc(tsdn, ret), isalloc(tsdn, ret));
}
return ret;
}
JEMALLOC_ALWAYS_INLINE void *
ialloc(tsd_t *tsd, size_t size, szind_t ind, bool zero, bool slow_path) {
return iallocztm(tsd_tsdn(tsd), size, ind, zero, tcache_get(tsd, true),
false, NULL, slow_path);
}
JEMALLOC_ALWAYS_INLINE void *
ipallocztm(tsdn_t *tsdn, size_t usize, size_t alignment, bool zero,
tcache_t *tcache, bool is_internal, arena_t *arena) {
void *ret;
assert(usize != 0);
assert(usize == sa2u(usize, alignment));
assert(!is_internal || tcache == NULL);
assert(!is_internal || arena == NULL || arena_ind_get(arena) <
narenas_auto);
witness_assert_depth_to_rank(tsdn, WITNESS_RANK_CORE, 0);
ret = arena_palloc(tsdn, arena, usize, alignment, zero, tcache);
assert(ALIGNMENT_ADDR2BASE(ret, alignment) == ret);
if (config_stats && is_internal && likely(ret != NULL)) {
arena_internal_add(iaalloc(tsdn, ret), isalloc(tsdn, ret));
}
return ret;
}
JEMALLOC_ALWAYS_INLINE void *
ipalloct(tsdn_t *tsdn, size_t usize, size_t alignment, bool zero,
tcache_t *tcache, arena_t *arena) {
return ipallocztm(tsdn, usize, alignment, zero, tcache, false, arena);
}
JEMALLOC_ALWAYS_INLINE void *
ipalloc(tsd_t *tsd, size_t usize, size_t alignment, bool zero) {
return ipallocztm(tsd_tsdn(tsd), usize, alignment, zero,
tcache_get(tsd, true), false, NULL);
}
JEMALLOC_ALWAYS_INLINE size_t
ivsalloc(tsdn_t *tsdn, const void *ptr) {
return arena_vsalloc(tsdn, ptr);
}
JEMALLOC_ALWAYS_INLINE void
idalloctm(tsdn_t *tsdn, void *ptr, tcache_t *tcache, bool is_internal,
bool slow_path) {
assert(ptr != NULL);
assert(!is_internal || tcache == NULL);
assert(!is_internal || arena_ind_get(iaalloc(tsdn, ptr)) <
narenas_auto);
witness_assert_depth_to_rank(tsdn, WITNESS_RANK_CORE, 0);
if (config_stats && is_internal) {
arena_internal_sub(iaalloc(tsdn, ptr), isalloc(tsdn, ptr));
}
arena_dalloc(tsdn, ptr, tcache, slow_path);
}
JEMALLOC_ALWAYS_INLINE void
idalloc(tsd_t *tsd, void *ptr) {
idalloctm(tsd_tsdn(tsd), ptr, tcache_get(tsd, false), false, true);
}
JEMALLOC_ALWAYS_INLINE void
isdalloct(tsdn_t *tsdn, void *ptr, size_t size,
tcache_t *tcache, bool slow_path) {
witness_assert_depth_to_rank(tsdn, WITNESS_RANK_CORE, 0);
arena_sdalloc(tsdn, ptr, size, tcache, slow_path);
}
JEMALLOC_ALWAYS_INLINE void *
iralloct_realign(tsdn_t *tsdn, void *ptr, size_t oldsize, size_t size,
size_t extra, size_t alignment, bool zero, tcache_t *tcache,
arena_t *arena) {
witness_assert_depth_to_rank(tsdn, WITNESS_RANK_CORE, 0);
void *p;
size_t usize, copysize;
usize = sa2u(size + extra, alignment);
if (unlikely(usize == 0 || usize > LARGE_MAXCLASS)) {
return NULL;
}
2016-04-06 07:52:36 +08:00
p = ipalloct(tsdn, usize, alignment, zero, tcache, arena);
if (p == NULL) {
if (extra == 0) {
return NULL;
}
/* Try again, without extra this time. */
usize = sa2u(size, alignment);
if (unlikely(usize == 0 || usize > LARGE_MAXCLASS)) {
return NULL;
}
2016-04-06 07:52:36 +08:00
p = ipalloct(tsdn, usize, alignment, zero, tcache, arena);
if (p == NULL) {
return NULL;
}
}
/*
* Copy at most size bytes (not size+extra), since the caller has no
* expectation that the extra bytes will be reliably preserved.
*/
copysize = (size < oldsize) ? size : oldsize;
memcpy(p, ptr, copysize);
isdalloct(tsdn, ptr, oldsize, tcache, true);
return p;
}
JEMALLOC_ALWAYS_INLINE void *
iralloct(tsdn_t *tsdn, void *ptr, size_t oldsize, size_t size, size_t alignment,
bool zero, tcache_t *tcache, arena_t *arena) {
assert(ptr != NULL);
assert(size != 0);
witness_assert_depth_to_rank(tsdn, WITNESS_RANK_CORE, 0);
if (alignment != 0 && ((uintptr_t)ptr & ((uintptr_t)alignment-1))
!= 0) {
/*
* Existing object alignment is inadequate; allocate new space
* and copy.
*/
return iralloct_realign(tsdn, ptr, oldsize, size, 0, alignment,
zero, tcache, arena);
}
return arena_ralloc(tsdn, arena, ptr, oldsize, size, alignment, zero,
tcache);
}
JEMALLOC_ALWAYS_INLINE void *
iralloc(tsd_t *tsd, void *ptr, size_t oldsize, size_t size, size_t alignment,
bool zero) {
return iralloct(tsd_tsdn(tsd), ptr, oldsize, size, alignment, zero,
tcache_get(tsd, true), NULL);
}
JEMALLOC_ALWAYS_INLINE bool
ixalloc(tsdn_t *tsdn, void *ptr, size_t oldsize, size_t size, size_t extra,
size_t alignment, bool zero) {
assert(ptr != NULL);
assert(size != 0);
witness_assert_depth_to_rank(tsdn, WITNESS_RANK_CORE, 0);
if (alignment != 0 && ((uintptr_t)ptr & ((uintptr_t)alignment-1))
!= 0) {
/* Existing object alignment is inadequate. */
return true;
}
return arena_ralloc_no_move(tsdn, ptr, oldsize, size, extra, zero);
}
#endif
#include "jemalloc/internal/prof_inlines_b.h"
#ifdef __cplusplus
}
#endif
#endif /* JEMALLOC_INTERNAL_H */