server-skynet-source-3rd-je.../include/jemalloc/internal/arena.h

1192 lines
36 KiB
C
Raw Normal View History

/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
/*
* RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
* as small as possible such that this setting is still honored, without
* violating other constraints. The goal is to make runs as small as possible
* without exceeding a per run external fragmentation threshold.
*
* We use binary fixed point math for overhead computations, where the binary
* point is implicitly RUN_BFP bits to the left.
*
* Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
2010-12-18 10:07:53 +08:00
* honored for some/all object sizes, since when heap profiling is enabled
* there is one pointer of header overhead per object (plus a constant). This
* constraint is relaxed (ignored) for runs that are so small that the
* per-region overhead is greater than:
*
* (RUN_MAX_OVRHD / (reg_interval << (3+RUN_BFP))
*/
#define RUN_BFP 12
/* \/ Implicit binary fixed point. */
#define RUN_MAX_OVRHD 0x0000003dU
#define RUN_MAX_OVRHD_RELAX 0x00001800U
/* Maximum number of regions in one run. */
#define LG_RUN_MAXREGS 11
#define RUN_MAXREGS (1U << LG_RUN_MAXREGS)
/*
* Minimum redzone size. Redzones may be larger than this if necessary to
* preserve region alignment.
*/
#define REDZONE_MINSIZE 16
/*
* The minimum ratio of active:dirty pages per arena is computed as:
*
* (nactive >> opt_lg_dirty_mult) >= ndirty
*
* So, supposing that opt_lg_dirty_mult is 3, there can be no less than 8 times
* as many active pages as dirty pages.
*/
#define LG_DIRTY_MULT_DEFAULT 3
typedef struct arena_chunk_map_bits_s arena_chunk_map_bits_t;
typedef struct arena_chunk_map_misc_s arena_chunk_map_misc_t;
typedef struct arena_chunk_s arena_chunk_t;
typedef struct arena_run_s arena_run_t;
typedef struct arena_bin_info_s arena_bin_info_t;
typedef struct arena_bin_s arena_bin_t;
typedef struct arena_s arena_t;
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
/* Each element of the chunk map corresponds to one page within the chunk. */
struct arena_chunk_map_bits_s {
/*
* Run address (or size) and various flags are stored together. The bit
* layout looks like (assuming 32-bit system):
*
2012-05-10 15:18:46 +08:00
* ???????? ???????? ????nnnn nnnndula
*
* ? : Unallocated: Run address for first/last pages, unset for internal
* pages.
* Small: Run page offset.
* Large: Run size for first page, unset for trailing pages.
2012-05-10 15:18:46 +08:00
* n : binind for small size class, BININD_INVALID for large size class.
* d : dirty?
2010-12-18 10:07:53 +08:00
* u : unzeroed?
* l : large?
* a : allocated?
*
* Following are example bit patterns for the three types of runs.
*
* p : run page offset
* s : run size
* n : binind for size class; large objects set these to BININD_INVALID
* x : don't care
* - : 0
* + : 1
* [DULA] : bit set
* [dula] : bit unset
*
* Unallocated (clean):
2012-05-10 15:18:46 +08:00
* ssssssss ssssssss ssss++++ ++++du-a
* xxxxxxxx xxxxxxxx xxxxxxxx xxxx-Uxx
2012-05-10 15:18:46 +08:00
* ssssssss ssssssss ssss++++ ++++dU-a
*
* Unallocated (dirty):
2012-05-10 15:18:46 +08:00
* ssssssss ssssssss ssss++++ ++++D--a
* xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
2012-05-10 15:18:46 +08:00
* ssssssss ssssssss ssss++++ ++++D--a
*
* Small:
* pppppppp pppppppp ppppnnnn nnnnd--A
* pppppppp pppppppp ppppnnnn nnnn---A
* pppppppp pppppppp ppppnnnn nnnnd--A
*
* Large:
2012-05-10 15:18:46 +08:00
* ssssssss ssssssss ssss++++ ++++D-LA
* xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
2012-05-10 15:18:46 +08:00
* -------- -------- ----++++ ++++D-LA
*
* Large (sampled, size <= PAGE):
* ssssssss ssssssss ssssnnnn nnnnD-LA
*
* Large (not sampled, size == PAGE):
2012-05-10 15:18:46 +08:00
* ssssssss ssssssss ssss++++ ++++D-LA
*/
size_t bits;
#define CHUNK_MAP_BININD_SHIFT 4
#define BININD_INVALID ((size_t)0xffU)
/* CHUNK_MAP_BININD_MASK == (BININD_INVALID << CHUNK_MAP_BININD_SHIFT) */
#define CHUNK_MAP_BININD_MASK ((size_t)0xff0U)
#define CHUNK_MAP_BININD_INVALID CHUNK_MAP_BININD_MASK
#define CHUNK_MAP_FLAGS_MASK ((size_t)0xcU)
#define CHUNK_MAP_DIRTY ((size_t)0x8U)
#define CHUNK_MAP_UNZEROED ((size_t)0x4U)
#define CHUNK_MAP_LARGE ((size_t)0x2U)
#define CHUNK_MAP_ALLOCATED ((size_t)0x1U)
#define CHUNK_MAP_KEY CHUNK_MAP_ALLOCATED
};
/*
* Each arena_chunk_map_misc_t corresponds to one page within the chunk, just
* like arena_chunk_map_bits_t. Two separate arrays are stored within each
* chunk header in order to improve cache locality.
*/
struct arena_chunk_map_misc_s {
#ifndef JEMALLOC_PROF
/*
* Overlay prof_tctx in order to allow it to be referenced by dead code.
* Such antics aren't warranted for per arena data structures, but
* chunk map overhead accounts for a percentage of memory, rather than
* being just a fixed cost.
*/
union {
#endif
/*
* Linkage for run trees. There are two disjoint uses:
*
* 1) arena_t's runs_avail tree.
* 2) arena_run_t conceptually uses this linkage for in-use non-full
* runs, rather than directly embedding linkage.
*/
rb_node(arena_chunk_map_misc_t) rb_link;
/* Profile counters, used for large object runs. */
prof_tctx_t *prof_tctx;
#ifndef JEMALLOC_PROF
}; /* union { ... }; */
#endif
/* Linkage for list of dirty runs. */
ql_elm(arena_chunk_map_misc_t) dr_link;
};
typedef rb_tree(arena_chunk_map_misc_t) arena_avail_tree_t;
typedef rb_tree(arena_chunk_map_misc_t) arena_run_tree_t;
typedef ql_head(arena_chunk_map_misc_t) arena_chunk_miscelms_t;
/* Arena chunk header. */
struct arena_chunk_s {
/* Arena that owns the chunk. */
arena_t *arena;
/*
* Map of pages within chunk that keeps track of free/large/small. The
* first map_bias entries are omitted, since the chunk header does not
* need to be tracked in the map. This omission saves a header page
* for common chunk sizes (e.g. 4 MiB).
*/
arena_chunk_map_bits_t map_bits[1]; /* Dynamically sized. */
};
struct arena_run_s {
/* Bin this run is associated with. */
arena_bin_t *bin;
/* Index of next region that has never been allocated, or nregs. */
uint32_t nextind;
/* Number of free regions in run. */
unsigned nfree;
};
/*
* Read-only information associated with each element of arena_t's bins array
* is stored separately, partly to reduce memory usage (only one copy, rather
* than one per arena), but mainly to avoid false cacheline sharing.
*
* Each run has the following layout:
*
* /--------------------\
* | arena_run_t header |
* | ... |
* bitmap_offset | bitmap |
* | ... |
* |--------------------|
* | redzone |
* reg0_offset | region 0 |
* | redzone |
* |--------------------| \
* | redzone | |
* | region 1 | > reg_interval
* | redzone | /
* |--------------------|
* | ... |
* | ... |
* | ... |
* |--------------------|
* | redzone |
* | region nregs-1 |
* | redzone |
* |--------------------|
* | alignment pad? |
* \--------------------/
*
* reg_interval has at least the same minimum alignment as reg_size; this
* preserves the alignment constraint that sa2u() depends on. Alignment pad is
* either 0 or redzone_size; it is present only if needed to align reg0_offset.
*/
struct arena_bin_info_s {
/* Size of regions in a run for this bin's size class. */
size_t reg_size;
/* Redzone size. */
size_t redzone_size;
/* Interval between regions (reg_size + (redzone_size << 1)). */
size_t reg_interval;
/* Total size of a run for this bin's size class. */
size_t run_size;
/* Total number of regions in a run for this bin's size class. */
uint32_t nregs;
/*
* Offset of first bitmap_t element in a run header for this bin's size
* class.
*/
uint32_t bitmap_offset;
/*
* Metadata used to manipulate bitmaps for runs associated with this
* bin.
*/
bitmap_info_t bitmap_info;
/* Offset of first region in a run for this bin's size class. */
uint32_t reg0_offset;
};
struct arena_bin_s {
/*
* All operations on runcur, runs, and stats require that lock be
* locked. Run allocation/deallocation are protected by the arena lock,
* which may be acquired while holding one or more bin locks, but not
* vise versa.
*/
malloc_mutex_t lock;
/*
* Current run being used to service allocations of this bin's size
* class.
*/
arena_run_t *runcur;
/*
* Tree of non-full runs. This tree is used when looking for an
* existing run when runcur is no longer usable. We choose the
* non-full run that is lowest in memory; this policy tends to keep
* objects packed well, and it can also help reduce the number of
* almost-empty chunks.
*/
arena_run_tree_t runs;
/* Bin statistics. */
malloc_bin_stats_t stats;
};
struct arena_s {
/* This arena's index within the arenas array. */
unsigned ind;
/*
* Number of threads currently assigned to this arena. This field is
* protected by arenas_lock.
*/
unsigned nthreads;
/*
* There are three classes of arena operations from a locking
* perspective:
* 1) Thread asssignment (modifies nthreads) is protected by
* arenas_lock.
* 2) Bin-related operations are protected by bin locks.
* 3) Chunk- and run-related operations are protected by this mutex.
*/
malloc_mutex_t lock;
arena_stats_t stats;
/*
* List of tcaches for extant threads associated with this arena.
* Stats from these are merged incrementally, and at exit.
*/
ql_head(tcache_t) tcache_ql;
uint64_t prof_accumbytes;
dss_prec_t dss_prec;
/*
* In order to avoid rapid chunk allocation/deallocation when an arena
* oscillates right on the cusp of needing a new chunk, cache the most
* recently freed chunk. The spare is left in the arena's chunk trees
* until it is deleted.
*
* There is one spare chunk per arena, rather than one spare total, in
* order to avoid interactions between multiple threads that could make
* a single spare inadequate.
*/
arena_chunk_t *spare;
/* Number of pages in active runs and huge regions. */
size_t nactive;
/*
* Current count of pages within unused runs that are potentially
* dirty, and for which madvise(... MADV_DONTNEED) has not been called.
* By tracking this, we can institute a limit on how much dirty unused
* memory is mapped for each arena.
*/
size_t ndirty;
/*
* Size/address-ordered trees of this arena's available runs. The trees
* are used for first-best-fit run allocation.
*/
arena_avail_tree_t runs_avail;
/* List of dirty runs this arena manages. */
arena_chunk_miscelms_t runs_dirty;
/*
* user-configureable chunk allocation and deallocation functions.
*/
chunk_alloc_t *chunk_alloc;
chunk_dalloc_t *chunk_dalloc;
/* bins is used to store trees of free regions. */
arena_bin_t bins[NBINS];
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern ssize_t opt_lg_dirty_mult;
/*
* small_size2bin_tab is a compact lookup table that rounds request sizes up to
* size classes. In order to reduce cache footprint, the table is compressed,
* and all accesses are via small_size2bin().
*/
extern uint8_t const small_size2bin_tab[];
/*
* small_bin2size_tab duplicates information in arena_bin_info, but in a const
* array, for which it is easier for the compiler to optimize repeated
* dereferences.
*/
extern uint32_t const small_bin2size_tab[NBINS];
extern arena_bin_info_t arena_bin_info[NBINS];
/* Number of large size classes. */
#define nlclasses (chunk_npages - map_bias)
void *arena_chunk_alloc_huge(arena_t *arena, size_t size, size_t alignment,
bool *zero);
void arena_chunk_dalloc_huge(arena_t *arena, void *chunk, size_t size);
2010-10-01 07:55:08 +08:00
void arena_purge_all(arena_t *arena);
void arena_tcache_fill_small(arena_t *arena, tcache_bin_t *tbin,
size_t binind, uint64_t prof_accumbytes);
void arena_alloc_junk_small(void *ptr, arena_bin_info_t *bin_info,
bool zero);
#ifdef JEMALLOC_JET
typedef void (arena_redzone_corruption_t)(void *, size_t, bool, size_t,
uint8_t);
extern arena_redzone_corruption_t *arena_redzone_corruption;
typedef void (arena_dalloc_junk_small_t)(void *, arena_bin_info_t *);
extern arena_dalloc_junk_small_t *arena_dalloc_junk_small;
#else
void arena_dalloc_junk_small(void *ptr, arena_bin_info_t *bin_info);
#endif
void arena_quarantine_junk_small(void *ptr, size_t usize);
void *arena_malloc_small(arena_t *arena, size_t size, bool zero);
void *arena_malloc_large(arena_t *arena, size_t size, bool zero);
void *arena_palloc(arena_t *arena, size_t size, size_t alignment, bool zero);
void arena_prof_promoted(const void *ptr, size_t size);
void arena_dalloc_bin_locked(arena_t *arena, arena_chunk_t *chunk, void *ptr,
arena_chunk_map_bits_t *bitselm);
void arena_dalloc_bin(arena_t *arena, arena_chunk_t *chunk, void *ptr,
size_t pageind, arena_chunk_map_bits_t *bitselm);
void arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr,
size_t pageind);
#ifdef JEMALLOC_JET
typedef void (arena_dalloc_junk_large_t)(void *, size_t);
extern arena_dalloc_junk_large_t *arena_dalloc_junk_large;
#endif
void arena_dalloc_large_locked(arena_t *arena, arena_chunk_t *chunk,
void *ptr);
void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr);
#ifdef JEMALLOC_JET
typedef void (arena_ralloc_junk_large_t)(void *, size_t, size_t);
extern arena_ralloc_junk_large_t *arena_ralloc_junk_large;
#endif
bool arena_ralloc_no_move(void *ptr, size_t oldsize, size_t size,
size_t extra, bool zero);
void *arena_ralloc(arena_t *arena, void *ptr, size_t oldsize, size_t size,
size_t extra, size_t alignment, bool zero, bool try_tcache_alloc,
bool try_tcache_dalloc);
dss_prec_t arena_dss_prec_get(arena_t *arena);
bool arena_dss_prec_set(arena_t *arena, dss_prec_t dss_prec);
void arena_stats_merge(arena_t *arena, const char **dss, size_t *nactive,
size_t *ndirty, arena_stats_t *astats, malloc_bin_stats_t *bstats,
malloc_large_stats_t *lstats);
bool arena_new(arena_t *arena, unsigned ind);
void arena_boot(void);
void arena_prefork(arena_t *arena);
void arena_postfork_parent(arena_t *arena);
void arena_postfork_child(arena_t *arena);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
size_t small_size2bin_compute(size_t size);
size_t small_size2bin_lookup(size_t size);
size_t small_size2bin(size_t size);
size_t small_bin2size_compute(size_t binind);
size_t small_bin2size_lookup(size_t binind);
size_t small_bin2size(size_t binind);
size_t small_s2u_compute(size_t size);
size_t small_s2u_lookup(size_t size);
size_t small_s2u(size_t size);
arena_chunk_map_bits_t *arena_bitselm_get(arena_chunk_t *chunk,
size_t pageind);
arena_chunk_map_misc_t *arena_miscelm_get(arena_chunk_t *chunk,
size_t pageind);
size_t *arena_mapbitsp_get(arena_chunk_t *chunk, size_t pageind);
size_t arena_mapbitsp_read(size_t *mapbitsp);
size_t arena_mapbits_get(arena_chunk_t *chunk, size_t pageind);
size_t arena_mapbits_unallocated_size_get(arena_chunk_t *chunk,
size_t pageind);
size_t arena_mapbits_large_size_get(arena_chunk_t *chunk, size_t pageind);
size_t arena_mapbits_small_runind_get(arena_chunk_t *chunk, size_t pageind);
size_t arena_mapbits_binind_get(arena_chunk_t *chunk, size_t pageind);
size_t arena_mapbits_dirty_get(arena_chunk_t *chunk, size_t pageind);
size_t arena_mapbits_unzeroed_get(arena_chunk_t *chunk, size_t pageind);
size_t arena_mapbits_large_get(arena_chunk_t *chunk, size_t pageind);
size_t arena_mapbits_allocated_get(arena_chunk_t *chunk, size_t pageind);
void arena_mapbitsp_write(size_t *mapbitsp, size_t mapbits);
void arena_mapbits_unallocated_set(arena_chunk_t *chunk, size_t pageind,
size_t size, size_t flags);
void arena_mapbits_unallocated_size_set(arena_chunk_t *chunk, size_t pageind,
size_t size);
void arena_mapbits_large_set(arena_chunk_t *chunk, size_t pageind,
size_t size, size_t flags);
void arena_mapbits_large_binind_set(arena_chunk_t *chunk, size_t pageind,
size_t binind);
void arena_mapbits_small_set(arena_chunk_t *chunk, size_t pageind,
size_t runind, size_t binind, size_t flags);
void arena_mapbits_unzeroed_set(arena_chunk_t *chunk, size_t pageind,
size_t unzeroed);
bool arena_prof_accum_impl(arena_t *arena, uint64_t accumbytes);
bool arena_prof_accum_locked(arena_t *arena, uint64_t accumbytes);
bool arena_prof_accum(arena_t *arena, uint64_t accumbytes);
size_t arena_ptr_small_binind_get(const void *ptr, size_t mapbits);
size_t arena_bin_index(arena_t *arena, arena_bin_t *bin);
unsigned arena_run_regind(arena_run_t *run, arena_bin_info_t *bin_info,
const void *ptr);
prof_tctx_t *arena_prof_tctx_get(const void *ptr);
void arena_prof_tctx_set(const void *ptr, prof_tctx_t *tctx);
void *arena_malloc(arena_t *arena, size_t size, bool zero, bool try_tcache);
size_t arena_salloc(const void *ptr, bool demote);
void arena_dalloc(arena_chunk_t *chunk, void *ptr, bool try_tcache);
void arena_sdalloc(arena_chunk_t *chunk, void *ptr, size_t size, bool try_tcache);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_ARENA_C_))
# ifdef JEMALLOC_ARENA_INLINE_A
JEMALLOC_INLINE size_t
small_size2bin_compute(size_t size)
{
#if (NTBINS != 0)
if (size <= (ZU(1) << LG_TINY_MAXCLASS)) {
size_t lg_tmin = LG_TINY_MAXCLASS - NTBINS + 1;
size_t lg_ceil = lg_floor(pow2_ceil(size));
return (lg_ceil < lg_tmin ? 0 : lg_ceil - lg_tmin);
} else
#endif
{
size_t x = lg_floor((size<<1)-1);
size_t shift = (x < LG_SIZE_CLASS_GROUP + LG_QUANTUM) ? 0 :
x - (LG_SIZE_CLASS_GROUP + LG_QUANTUM);
size_t grp = shift << LG_SIZE_CLASS_GROUP;
size_t lg_delta = (x < LG_SIZE_CLASS_GROUP + LG_QUANTUM + 1)
? LG_QUANTUM : x - LG_SIZE_CLASS_GROUP - 1;
size_t delta_inverse_mask = ZI(-1) << lg_delta;
size_t mod = ((((size-1) & delta_inverse_mask) >> lg_delta)) &
((ZU(1) << LG_SIZE_CLASS_GROUP) - 1);
size_t bin = NTBINS + grp + mod;
return (bin);
}
}
JEMALLOC_ALWAYS_INLINE size_t
small_size2bin_lookup(size_t size)
{
assert(size <= LOOKUP_MAXCLASS);
{
size_t ret = ((size_t)(small_size2bin_tab[(size-1) >>
LG_TINY_MIN]));
assert(ret == small_size2bin_compute(size));
return (ret);
}
}
JEMALLOC_ALWAYS_INLINE size_t
small_size2bin(size_t size)
{
assert(size > 0);
if (size <= LOOKUP_MAXCLASS)
return (small_size2bin_lookup(size));
else
return (small_size2bin_compute(size));
}
JEMALLOC_INLINE size_t
small_bin2size_compute(size_t binind)
{
#if (NTBINS > 0)
if (binind < NTBINS)
return (ZU(1) << (LG_TINY_MAXCLASS - NTBINS + 1 + binind));
else
#endif
{
size_t reduced_binind = binind - NTBINS;
size_t grp = reduced_binind >> LG_SIZE_CLASS_GROUP;
size_t mod = reduced_binind & ((ZU(1) << LG_SIZE_CLASS_GROUP) -
1);
size_t grp_size_mask = ~((!!grp)-1);
size_t grp_size = ((ZU(1) << (LG_QUANTUM +
(LG_SIZE_CLASS_GROUP-1))) << grp) & grp_size_mask;
size_t shift = (grp == 0) ? 1 : grp;
size_t lg_delta = shift + (LG_QUANTUM-1);
size_t mod_size = (mod+1) << lg_delta;
size_t usize = grp_size + mod_size;
return (usize);
}
}
JEMALLOC_ALWAYS_INLINE size_t
small_bin2size_lookup(size_t binind)
{
assert(binind < NBINS);
{
size_t ret = (size_t)small_bin2size_tab[binind];
assert(ret == small_bin2size_compute(binind));
return (ret);
}
}
JEMALLOC_ALWAYS_INLINE size_t
small_bin2size(size_t binind)
{
return (small_bin2size_lookup(binind));
}
JEMALLOC_ALWAYS_INLINE size_t
small_s2u_compute(size_t size)
{
#if (NTBINS > 0)
if (size <= (ZU(1) << LG_TINY_MAXCLASS)) {
size_t lg_tmin = LG_TINY_MAXCLASS - NTBINS + 1;
size_t lg_ceil = lg_floor(pow2_ceil(size));
return (lg_ceil < lg_tmin ? (ZU(1) << lg_tmin) :
(ZU(1) << lg_ceil));
} else
#endif
{
size_t x = lg_floor((size<<1)-1);
size_t lg_delta = (x < LG_SIZE_CLASS_GROUP + LG_QUANTUM + 1)
? LG_QUANTUM : x - LG_SIZE_CLASS_GROUP - 1;
size_t delta = ZU(1) << lg_delta;
size_t delta_mask = delta - 1;
size_t usize = (size + delta_mask) & ~delta_mask;
return (usize);
}
}
JEMALLOC_ALWAYS_INLINE size_t
small_s2u_lookup(size_t size)
{
size_t ret = small_bin2size(small_size2bin(size));
assert(ret == small_s2u_compute(size));
return (ret);
}
JEMALLOC_ALWAYS_INLINE size_t
small_s2u(size_t size)
{
assert(size > 0);
if (size <= LOOKUP_MAXCLASS)
return (small_s2u_lookup(size));
else
return (small_s2u_compute(size));
}
# endif /* JEMALLOC_ARENA_INLINE_A */
# ifdef JEMALLOC_ARENA_INLINE_B
JEMALLOC_ALWAYS_INLINE arena_chunk_map_bits_t *
arena_bitselm_get(arena_chunk_t *chunk, size_t pageind)
{
assert(pageind >= map_bias);
assert(pageind < chunk_npages);
return (&chunk->map_bits[pageind-map_bias]);
}
JEMALLOC_ALWAYS_INLINE arena_chunk_map_misc_t *
arena_miscelm_get(arena_chunk_t *chunk, size_t pageind)
{
assert(pageind >= map_bias);
assert(pageind < chunk_npages);
return ((arena_chunk_map_misc_t *)((uintptr_t)chunk +
(uintptr_t)map_misc_offset) + pageind-map_bias);
}
JEMALLOC_ALWAYS_INLINE size_t *
arena_mapbitsp_get(arena_chunk_t *chunk, size_t pageind)
{
return (&arena_bitselm_get(chunk, pageind)->bits);
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbitsp_read(size_t *mapbitsp)
{
return (*mapbitsp);
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_get(arena_chunk_t *chunk, size_t pageind)
{
return (arena_mapbitsp_read(arena_mapbitsp_get(chunk, pageind)));
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_unallocated_size_get(arena_chunk_t *chunk, size_t pageind)
{
size_t mapbits;
mapbits = arena_mapbits_get(chunk, pageind);
assert((mapbits & (CHUNK_MAP_LARGE|CHUNK_MAP_ALLOCATED)) == 0);
return (mapbits & ~PAGE_MASK);
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_large_size_get(arena_chunk_t *chunk, size_t pageind)
{
size_t mapbits;
mapbits = arena_mapbits_get(chunk, pageind);
assert((mapbits & (CHUNK_MAP_LARGE|CHUNK_MAP_ALLOCATED)) ==
(CHUNK_MAP_LARGE|CHUNK_MAP_ALLOCATED));
return (mapbits & ~PAGE_MASK);
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_small_runind_get(arena_chunk_t *chunk, size_t pageind)
{
size_t mapbits;
mapbits = arena_mapbits_get(chunk, pageind);
assert((mapbits & (CHUNK_MAP_LARGE|CHUNK_MAP_ALLOCATED)) ==
CHUNK_MAP_ALLOCATED);
return (mapbits >> LG_PAGE);
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_binind_get(arena_chunk_t *chunk, size_t pageind)
{
size_t mapbits;
size_t binind;
mapbits = arena_mapbits_get(chunk, pageind);
binind = (mapbits & CHUNK_MAP_BININD_MASK) >> CHUNK_MAP_BININD_SHIFT;
assert(binind < NBINS || binind == BININD_INVALID);
return (binind);
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_dirty_get(arena_chunk_t *chunk, size_t pageind)
{
size_t mapbits;
mapbits = arena_mapbits_get(chunk, pageind);
return (mapbits & CHUNK_MAP_DIRTY);
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_unzeroed_get(arena_chunk_t *chunk, size_t pageind)
{
size_t mapbits;
mapbits = arena_mapbits_get(chunk, pageind);
return (mapbits & CHUNK_MAP_UNZEROED);
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_large_get(arena_chunk_t *chunk, size_t pageind)
{
size_t mapbits;
mapbits = arena_mapbits_get(chunk, pageind);
return (mapbits & CHUNK_MAP_LARGE);
}
JEMALLOC_ALWAYS_INLINE size_t
arena_mapbits_allocated_get(arena_chunk_t *chunk, size_t pageind)
{
size_t mapbits;
mapbits = arena_mapbits_get(chunk, pageind);
return (mapbits & CHUNK_MAP_ALLOCATED);
}
JEMALLOC_ALWAYS_INLINE void
arena_mapbitsp_write(size_t *mapbitsp, size_t mapbits)
{
*mapbitsp = mapbits;
}
JEMALLOC_ALWAYS_INLINE void
arena_mapbits_unallocated_set(arena_chunk_t *chunk, size_t pageind, size_t size,
size_t flags)
{
size_t *mapbitsp = arena_mapbitsp_get(chunk, pageind);
assert((size & PAGE_MASK) == 0);
assert((flags & ~CHUNK_MAP_FLAGS_MASK) == 0);
assert((flags & (CHUNK_MAP_DIRTY|CHUNK_MAP_UNZEROED)) == flags);
arena_mapbitsp_write(mapbitsp, size | CHUNK_MAP_BININD_INVALID | flags);
}
JEMALLOC_ALWAYS_INLINE void
arena_mapbits_unallocated_size_set(arena_chunk_t *chunk, size_t pageind,
size_t size)
{
size_t *mapbitsp = arena_mapbitsp_get(chunk, pageind);
size_t mapbits = arena_mapbitsp_read(mapbitsp);
assert((size & PAGE_MASK) == 0);
assert((mapbits & (CHUNK_MAP_LARGE|CHUNK_MAP_ALLOCATED)) == 0);
arena_mapbitsp_write(mapbitsp, size | (mapbits & PAGE_MASK));
}
JEMALLOC_ALWAYS_INLINE void
arena_mapbits_large_set(arena_chunk_t *chunk, size_t pageind, size_t size,
size_t flags)
{
size_t *mapbitsp = arena_mapbitsp_get(chunk, pageind);
size_t mapbits = arena_mapbitsp_read(mapbitsp);
size_t unzeroed;
assert((size & PAGE_MASK) == 0);
assert((flags & CHUNK_MAP_DIRTY) == flags);
unzeroed = mapbits & CHUNK_MAP_UNZEROED; /* Preserve unzeroed. */
arena_mapbitsp_write(mapbitsp, size | CHUNK_MAP_BININD_INVALID | flags
| unzeroed | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED);
}
JEMALLOC_ALWAYS_INLINE void
arena_mapbits_large_binind_set(arena_chunk_t *chunk, size_t pageind,
size_t binind)
{
size_t *mapbitsp = arena_mapbitsp_get(chunk, pageind);
size_t mapbits = arena_mapbitsp_read(mapbitsp);
assert(binind <= BININD_INVALID);
assert(arena_mapbits_large_size_get(chunk, pageind) == PAGE);
arena_mapbitsp_write(mapbitsp, (mapbits & ~CHUNK_MAP_BININD_MASK) |
(binind << CHUNK_MAP_BININD_SHIFT));
}
JEMALLOC_ALWAYS_INLINE void
arena_mapbits_small_set(arena_chunk_t *chunk, size_t pageind, size_t runind,
size_t binind, size_t flags)
{
size_t *mapbitsp = arena_mapbitsp_get(chunk, pageind);
size_t mapbits = arena_mapbitsp_read(mapbitsp);
size_t unzeroed;
assert(binind < BININD_INVALID);
assert(pageind - runind >= map_bias);
assert((flags & CHUNK_MAP_DIRTY) == flags);
unzeroed = mapbits & CHUNK_MAP_UNZEROED; /* Preserve unzeroed. */
arena_mapbitsp_write(mapbitsp, (runind << LG_PAGE) | (binind <<
CHUNK_MAP_BININD_SHIFT) | flags | unzeroed | CHUNK_MAP_ALLOCATED);
}
JEMALLOC_ALWAYS_INLINE void
arena_mapbits_unzeroed_set(arena_chunk_t *chunk, size_t pageind,
size_t unzeroed)
{
size_t *mapbitsp = arena_mapbitsp_get(chunk, pageind);
size_t mapbits = arena_mapbitsp_read(mapbitsp);
arena_mapbitsp_write(mapbitsp, (mapbits & ~CHUNK_MAP_UNZEROED) |
unzeroed);
}
JEMALLOC_INLINE bool
arena_prof_accum_impl(arena_t *arena, uint64_t accumbytes)
{
cassert(config_prof);
assert(prof_interval != 0);
arena->prof_accumbytes += accumbytes;
if (arena->prof_accumbytes >= prof_interval) {
arena->prof_accumbytes -= prof_interval;
return (true);
}
return (false);
}
JEMALLOC_INLINE bool
arena_prof_accum_locked(arena_t *arena, uint64_t accumbytes)
{
cassert(config_prof);
if (prof_interval == 0)
return (false);
return (arena_prof_accum_impl(arena, accumbytes));
}
JEMALLOC_INLINE bool
arena_prof_accum(arena_t *arena, uint64_t accumbytes)
{
cassert(config_prof);
if (prof_interval == 0)
return (false);
{
bool ret;
malloc_mutex_lock(&arena->lock);
ret = arena_prof_accum_impl(arena, accumbytes);
malloc_mutex_unlock(&arena->lock);
return (ret);
}
}
JEMALLOC_ALWAYS_INLINE size_t
arena_ptr_small_binind_get(const void *ptr, size_t mapbits)
{
size_t binind;
binind = (mapbits & CHUNK_MAP_BININD_MASK) >> CHUNK_MAP_BININD_SHIFT;
if (config_debug) {
arena_chunk_t *chunk;
arena_t *arena;
size_t pageind;
size_t actual_mapbits;
arena_run_t *run;
arena_bin_t *bin;
size_t actual_binind;
arena_bin_info_t *bin_info;
assert(binind != BININD_INVALID);
assert(binind < NBINS);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
arena = chunk->arena;
pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
actual_mapbits = arena_mapbits_get(chunk, pageind);
assert(mapbits == actual_mapbits);
assert(arena_mapbits_large_get(chunk, pageind) == 0);
assert(arena_mapbits_allocated_get(chunk, pageind) != 0);
run = (arena_run_t *)((uintptr_t)chunk + (uintptr_t)((pageind -
(actual_mapbits >> LG_PAGE)) << LG_PAGE));
bin = run->bin;
actual_binind = bin - arena->bins;
assert(binind == actual_binind);
bin_info = &arena_bin_info[actual_binind];
assert(((uintptr_t)ptr - ((uintptr_t)run +
(uintptr_t)bin_info->reg0_offset)) % bin_info->reg_interval
== 0);
}
return (binind);
}
# endif /* JEMALLOC_ARENA_INLINE_B */
# ifdef JEMALLOC_ARENA_INLINE_C
JEMALLOC_INLINE size_t
arena_bin_index(arena_t *arena, arena_bin_t *bin)
{
size_t binind = bin - arena->bins;
assert(binind < NBINS);
return (binind);
}
JEMALLOC_INLINE unsigned
arena_run_regind(arena_run_t *run, arena_bin_info_t *bin_info, const void *ptr)
{
unsigned shift, diff, regind;
size_t interval;
/*
* Freeing a pointer lower than region zero can cause assertion
* failure.
*/
assert((uintptr_t)ptr >= (uintptr_t)run +
(uintptr_t)bin_info->reg0_offset);
/*
* Avoid doing division with a variable divisor if possible. Using
* actual division here can reduce allocator throughput by over 20%!
*/
diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run -
bin_info->reg0_offset);
/* Rescale (factor powers of 2 out of the numerator and denominator). */
interval = bin_info->reg_interval;
shift = jemalloc_ffs(interval) - 1;
diff >>= shift;
interval >>= shift;
if (interval == 1) {
/* The divisor was a power of 2. */
regind = diff;
} else {
/*
* To divide by a number D that is not a power of two we
* multiply by (2^21 / D) and then right shift by 21 positions.
*
* X / D
*
* becomes
*
* (X * interval_invs[D - 3]) >> SIZE_INV_SHIFT
*
* We can omit the first three elements, because we never
* divide by 0, and 1 and 2 are both powers of two, which are
* handled above.
*/
#define SIZE_INV_SHIFT ((sizeof(unsigned) << 3) - LG_RUN_MAXREGS)
#define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s)) + 1)
static const unsigned interval_invs[] = {
SIZE_INV(3),
SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
SIZE_INV(12), SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
SIZE_INV(16), SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
SIZE_INV(20), SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
SIZE_INV(24), SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
SIZE_INV(28), SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
};
if (interval <= ((sizeof(interval_invs) / sizeof(unsigned)) +
2)) {
regind = (diff * interval_invs[interval - 3]) >>
SIZE_INV_SHIFT;
} else
regind = diff / interval;
#undef SIZE_INV
#undef SIZE_INV_SHIFT
}
assert(diff == regind * interval);
assert(regind < bin_info->nregs);
return (regind);
}
JEMALLOC_INLINE prof_tctx_t *
arena_prof_tctx_get(const void *ptr)
{
prof_tctx_t *ret;
arena_chunk_t *chunk;
size_t pageind, mapbits;
cassert(config_prof);
assert(ptr != NULL);
assert(CHUNK_ADDR2BASE(ptr) != ptr);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
mapbits = arena_mapbits_get(chunk, pageind);
assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
if ((mapbits & CHUNK_MAP_LARGE) == 0)
ret = (prof_tctx_t *)(uintptr_t)1U;
else
ret = arena_miscelm_get(chunk, pageind)->prof_tctx;
return (ret);
}
JEMALLOC_INLINE void
arena_prof_tctx_set(const void *ptr, prof_tctx_t *tctx)
{
arena_chunk_t *chunk;
size_t pageind;
cassert(config_prof);
assert(ptr != NULL);
assert(CHUNK_ADDR2BASE(ptr) != ptr);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
assert(arena_mapbits_allocated_get(chunk, pageind) != 0);
if (arena_mapbits_large_get(chunk, pageind) != 0)
arena_miscelm_get(chunk, pageind)->prof_tctx = tctx;
}
JEMALLOC_ALWAYS_INLINE void *
arena_malloc(arena_t *arena, size_t size, bool zero, bool try_tcache)
{
tcache_t *tcache;
assert(size != 0);
assert(size <= arena_maxclass);
if (size <= SMALL_MAXCLASS) {
if (try_tcache && (tcache = tcache_get(true)) != NULL)
return (tcache_alloc_small(tcache, size, zero));
else {
return (arena_malloc_small(choose_arena(arena), size,
zero));
}
} else {
2012-02-14 07:18:19 +08:00
/*
* Initialize tcache after checking size in order to avoid
* infinite recursion during tcache initialization.
*/
if (try_tcache && size <= tcache_maxclass && (tcache =
tcache_get(true)) != NULL)
return (tcache_alloc_large(tcache, size, zero));
else {
return (arena_malloc_large(choose_arena(arena), size,
zero));
}
}
}
/* Return the size of the allocation pointed to by ptr. */
JEMALLOC_ALWAYS_INLINE size_t
arena_salloc(const void *ptr, bool demote)
{
size_t ret;
arena_chunk_t *chunk;
size_t pageind, binind;
assert(ptr != NULL);
assert(CHUNK_ADDR2BASE(ptr) != ptr);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
assert(arena_mapbits_allocated_get(chunk, pageind) != 0);
binind = arena_mapbits_binind_get(chunk, pageind);
if (binind == BININD_INVALID || (config_prof && demote == false &&
arena_mapbits_large_get(chunk, pageind) != 0)) {
/*
* Large allocation. In the common case (demote == true), and
* as this is an inline function, most callers will only end up
* looking at binind to determine that ptr is a small
* allocation.
*/
assert(((uintptr_t)ptr & PAGE_MASK) == 0);
ret = arena_mapbits_large_size_get(chunk, pageind);
assert(ret != 0);
assert(pageind + (ret>>LG_PAGE) <= chunk_npages);
assert(ret == PAGE || arena_mapbits_large_size_get(chunk,
pageind+(ret>>LG_PAGE)-1) == 0);
assert(binind == arena_mapbits_binind_get(chunk,
pageind+(ret>>LG_PAGE)-1));
assert(arena_mapbits_dirty_get(chunk, pageind) ==
arena_mapbits_dirty_get(chunk, pageind+(ret>>LG_PAGE)-1));
} else {
/* Small allocation (possibly promoted to a large object). */
assert(arena_mapbits_large_get(chunk, pageind) != 0 ||
arena_ptr_small_binind_get(ptr, arena_mapbits_get(chunk,
pageind)) == binind);
ret = small_bin2size(binind);
}
return (ret);
}
JEMALLOC_ALWAYS_INLINE void
arena_dalloc(arena_chunk_t *chunk, void *ptr, bool try_tcache)
{
size_t pageind, mapbits;
tcache_t *tcache;
assert(ptr != NULL);
assert(CHUNK_ADDR2BASE(ptr) != ptr);
pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
mapbits = arena_mapbits_get(chunk, pageind);
assert(arena_mapbits_allocated_get(chunk, pageind) != 0);
if ((mapbits & CHUNK_MAP_LARGE) == 0) {
/* Small allocation. */
if (try_tcache && (tcache = tcache_get(false)) != NULL) {
size_t binind = arena_ptr_small_binind_get(ptr, mapbits);
tcache_dalloc_small(tcache, ptr, binind);
} else
arena_dalloc_small(chunk->arena, chunk, ptr, pageind);
} else {
size_t size = arena_mapbits_large_size_get(chunk, pageind);
assert(((uintptr_t)ptr & PAGE_MASK) == 0);
if (try_tcache && size <= tcache_maxclass && (tcache =
tcache_get(false)) != NULL) {
tcache_dalloc_large(tcache, ptr, size);
} else
arena_dalloc_large(chunk->arena, chunk, ptr);
}
}
JEMALLOC_ALWAYS_INLINE void
arena_sdalloc(arena_chunk_t *chunk, void *ptr, size_t size, bool try_tcache)
{
tcache_t *tcache;
assert(ptr != NULL);
assert(CHUNK_ADDR2BASE(ptr) != ptr);
if (size < PAGE) {
/* Small allocation. */
if (try_tcache && (tcache = tcache_get(false)) != NULL) {
size_t binind = small_size2bin(size);
tcache_dalloc_small(tcache, ptr, binind);
} else {
size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> LG_PAGE;
arena_dalloc_small(chunk->arena, chunk, ptr, pageind);
}
} else {
assert(((uintptr_t)ptr & PAGE_MASK) == 0);
if (try_tcache && size <= tcache_maxclass && (tcache =
tcache_get(false)) != NULL) {
tcache_dalloc_large(tcache, ptr, size);
} else
arena_dalloc_large(chunk->arena, chunk, ptr);
}
}
# endif /* JEMALLOC_ARENA_INLINE_C */
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/