server-skynet-source-3rd-je.../src/prof_log.c

712 lines
18 KiB
C
Raw Normal View History

#define JEMALLOC_PROF_C_
#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"
#include "jemalloc/internal/assert.h"
#include "jemalloc/internal/ckh.h"
#include "jemalloc/internal/hash.h"
#include "jemalloc/internal/malloc_io.h"
#include "jemalloc/internal/mutex.h"
#include "jemalloc/internal/emitter.h"
bool opt_prof_log = false;
typedef enum prof_logging_state_e prof_logging_state_t;
enum prof_logging_state_e {
prof_logging_state_stopped,
prof_logging_state_started,
prof_logging_state_dumping
};
/*
* - stopped: log_start never called, or previous log_stop has completed.
* - started: log_start called, log_stop not called yet. Allocations are logged.
* - dumping: log_stop called but not finished; samples are not logged anymore.
*/
prof_logging_state_t prof_logging_state = prof_logging_state_stopped;
#ifdef JEMALLOC_JET
static bool prof_log_dummy = false;
#endif
/* Incremented for every log file that is output. */
static uint64_t log_seq = 0;
static char log_filename[
/* Minimize memory bloat for non-prof builds. */
#ifdef JEMALLOC_PROF
PATH_MAX +
#endif
1];
/* Timestamp for most recent call to log_start(). */
static nstime_t log_start_timestamp = NSTIME_ZERO_INITIALIZER;
/* Increment these when adding to the log_bt and log_thr linked lists. */
static size_t log_bt_index = 0;
static size_t log_thr_index = 0;
/* Linked list node definitions. These are only used in this file. */
typedef struct prof_bt_node_s prof_bt_node_t;
struct prof_bt_node_s {
prof_bt_node_t *next;
size_t index;
prof_bt_t bt;
/* Variable size backtrace vector pointed to by bt. */
void *vec[1];
};
typedef struct prof_thr_node_s prof_thr_node_t;
struct prof_thr_node_s {
prof_thr_node_t *next;
size_t index;
uint64_t thr_uid;
/* Variable size based on thr_name_sz. */
char name[1];
};
typedef struct prof_alloc_node_s prof_alloc_node_t;
/* This is output when logging sampled allocations. */
struct prof_alloc_node_s {
prof_alloc_node_t *next;
/* Indices into an array of thread data. */
size_t alloc_thr_ind;
size_t free_thr_ind;
/* Indices into an array of backtraces. */
size_t alloc_bt_ind;
size_t free_bt_ind;
uint64_t alloc_time_ns;
uint64_t free_time_ns;
size_t usize;
};
/*
* Created on the first call to prof_log_start and deleted on prof_log_stop.
* These are the backtraces and threads that have already been logged by an
* allocation.
*/
static bool log_tables_initialized = false;
static ckh_t log_bt_node_set;
static ckh_t log_thr_node_set;
/* Store linked lists for logged data. */
static prof_bt_node_t *log_bt_first = NULL;
static prof_bt_node_t *log_bt_last = NULL;
static prof_thr_node_t *log_thr_first = NULL;
static prof_thr_node_t *log_thr_last = NULL;
static prof_alloc_node_t *log_alloc_first = NULL;
static prof_alloc_node_t *log_alloc_last = NULL;
/* Protects the prof_logging_state and any log_{...} variable. */
static malloc_mutex_t log_mtx;
/******************************************************************************/
/*
* Function prototypes for static functions that are referenced prior to
* definition.
*/
/* Hashtable functions for log_bt_node_set and log_thr_node_set. */
static void prof_thr_node_hash(const void *key, size_t r_hash[2]);
static bool prof_thr_node_keycomp(const void *k1, const void *k2);
static void prof_bt_node_hash(const void *key, size_t r_hash[2]);
static bool prof_bt_node_keycomp(const void *k1, const void *k2);
/******************************************************************************/
static size_t
prof_log_bt_index(tsd_t *tsd, prof_bt_t *bt) {
assert(prof_logging_state == prof_logging_state_started);
malloc_mutex_assert_owner(tsd_tsdn(tsd), &log_mtx);
prof_bt_node_t dummy_node;
dummy_node.bt = *bt;
prof_bt_node_t *node;
/* See if this backtrace is already cached in the table. */
if (ckh_search(&log_bt_node_set, (void *)(&dummy_node),
(void **)(&node), NULL)) {
size_t sz = offsetof(prof_bt_node_t, vec) +
(bt->len * sizeof(void *));
prof_bt_node_t *new_node = (prof_bt_node_t *)
iallocztm(tsd_tsdn(tsd), sz, sz_size2index(sz), false, NULL,
true, arena_get(TSDN_NULL, 0, true), true);
if (log_bt_first == NULL) {
log_bt_first = new_node;
log_bt_last = new_node;
} else {
log_bt_last->next = new_node;
log_bt_last = new_node;
}
new_node->next = NULL;
new_node->index = log_bt_index;
/*
* Copy the backtrace: bt is inside a tdata or gctx, which
* might die before prof_log_stop is called.
*/
new_node->bt.len = bt->len;
memcpy(new_node->vec, bt->vec, bt->len * sizeof(void *));
new_node->bt.vec = new_node->vec;
log_bt_index++;
ckh_insert(tsd, &log_bt_node_set, (void *)new_node, NULL);
return new_node->index;
} else {
return node->index;
}
}
static size_t
prof_log_thr_index(tsd_t *tsd, uint64_t thr_uid, const char *name) {
assert(prof_logging_state == prof_logging_state_started);
malloc_mutex_assert_owner(tsd_tsdn(tsd), &log_mtx);
prof_thr_node_t dummy_node;
dummy_node.thr_uid = thr_uid;
prof_thr_node_t *node;
/* See if this thread is already cached in the table. */
if (ckh_search(&log_thr_node_set, (void *)(&dummy_node),
(void **)(&node), NULL)) {
size_t sz = offsetof(prof_thr_node_t, name) + strlen(name) + 1;
prof_thr_node_t *new_node = (prof_thr_node_t *)
iallocztm(tsd_tsdn(tsd), sz, sz_size2index(sz), false, NULL,
true, arena_get(TSDN_NULL, 0, true), true);
if (log_thr_first == NULL) {
log_thr_first = new_node;
log_thr_last = new_node;
} else {
log_thr_last->next = new_node;
log_thr_last = new_node;
}
new_node->next = NULL;
new_node->index = log_thr_index;
new_node->thr_uid = thr_uid;
strcpy(new_node->name, name);
log_thr_index++;
ckh_insert(tsd, &log_thr_node_set, (void *)new_node, NULL);
return new_node->index;
} else {
return node->index;
}
}
void
prof_try_log(tsd_t *tsd, const void *ptr, size_t usize, prof_tctx_t *tctx) {
malloc_mutex_assert_owner(tsd_tsdn(tsd), tctx->tdata->lock);
prof_tdata_t *cons_tdata = prof_tdata_get(tsd, false);
if (cons_tdata == NULL) {
/*
* We decide not to log these allocations. cons_tdata will be
* NULL only when the current thread is in a weird state (e.g.
* it's being destroyed).
*/
return;
}
malloc_mutex_lock(tsd_tsdn(tsd), &log_mtx);
if (prof_logging_state != prof_logging_state_started) {
goto label_done;
}
if (!log_tables_initialized) {
bool err1 = ckh_new(tsd, &log_bt_node_set, PROF_CKH_MINITEMS,
prof_bt_node_hash, prof_bt_node_keycomp);
bool err2 = ckh_new(tsd, &log_thr_node_set, PROF_CKH_MINITEMS,
prof_thr_node_hash, prof_thr_node_keycomp);
if (err1 || err2) {
goto label_done;
}
log_tables_initialized = true;
}
nstime_t alloc_time = prof_alloc_time_get(tsd_tsdn(tsd), ptr,
(alloc_ctx_t *)NULL);
nstime_t free_time = NSTIME_ZERO_INITIALIZER;
nstime_update(&free_time);
size_t sz = sizeof(prof_alloc_node_t);
prof_alloc_node_t *new_node = (prof_alloc_node_t *)
iallocztm(tsd_tsdn(tsd), sz, sz_size2index(sz), false, NULL, true,
arena_get(TSDN_NULL, 0, true), true);
const char *prod_thr_name = (tctx->tdata->thread_name == NULL)?
"" : tctx->tdata->thread_name;
const char *cons_thr_name = prof_thread_name_get(tsd);
prof_bt_t bt;
/* Initialize the backtrace, using the buffer in tdata to store it. */
bt_init(&bt, cons_tdata->vec);
prof_backtrace(&bt);
prof_bt_t *cons_bt = &bt;
/* We haven't destroyed tctx yet, so gctx should be good to read. */
prof_bt_t *prod_bt = &tctx->gctx->bt;
new_node->next = NULL;
new_node->alloc_thr_ind = prof_log_thr_index(tsd, tctx->tdata->thr_uid,
prod_thr_name);
new_node->free_thr_ind = prof_log_thr_index(tsd, cons_tdata->thr_uid,
cons_thr_name);
new_node->alloc_bt_ind = prof_log_bt_index(tsd, prod_bt);
new_node->free_bt_ind = prof_log_bt_index(tsd, cons_bt);
new_node->alloc_time_ns = nstime_ns(&alloc_time);
new_node->free_time_ns = nstime_ns(&free_time);
new_node->usize = usize;
if (log_alloc_first == NULL) {
log_alloc_first = new_node;
log_alloc_last = new_node;
} else {
log_alloc_last->next = new_node;
log_alloc_last = new_node;
}
label_done:
malloc_mutex_unlock(tsd_tsdn(tsd), &log_mtx);
}
static void
prof_bt_node_hash(const void *key, size_t r_hash[2]) {
const prof_bt_node_t *bt_node = (prof_bt_node_t *)key;
prof_bt_hash((void *)(&bt_node->bt), r_hash);
}
static bool
prof_bt_node_keycomp(const void *k1, const void *k2) {
const prof_bt_node_t *bt_node1 = (prof_bt_node_t *)k1;
const prof_bt_node_t *bt_node2 = (prof_bt_node_t *)k2;
return prof_bt_keycomp((void *)(&bt_node1->bt),
(void *)(&bt_node2->bt));
}
static void
prof_thr_node_hash(const void *key, size_t r_hash[2]) {
const prof_thr_node_t *thr_node = (prof_thr_node_t *)key;
hash(&thr_node->thr_uid, sizeof(uint64_t), 0x94122f35U, r_hash);
}
static bool
prof_thr_node_keycomp(const void *k1, const void *k2) {
const prof_thr_node_t *thr_node1 = (prof_thr_node_t *)k1;
const prof_thr_node_t *thr_node2 = (prof_thr_node_t *)k2;
return thr_node1->thr_uid == thr_node2->thr_uid;
}
#ifdef JEMALLOC_JET
size_t
prof_log_bt_count(void) {
size_t cnt = 0;
prof_bt_node_t *node = log_bt_first;
while (node != NULL) {
cnt++;
node = node->next;
}
return cnt;
}
size_t
prof_log_alloc_count(void) {
size_t cnt = 0;
prof_alloc_node_t *node = log_alloc_first;
while (node != NULL) {
cnt++;
node = node->next;
}
return cnt;
}
size_t
prof_log_thr_count(void) {
size_t cnt = 0;
prof_thr_node_t *node = log_thr_first;
while (node != NULL) {
cnt++;
node = node->next;
}
return cnt;
}
bool
prof_log_is_logging(void) {
return prof_logging_state == prof_logging_state_started;
}
bool
prof_log_rep_check(void) {
if (prof_logging_state == prof_logging_state_stopped
&& log_tables_initialized) {
return true;
}
if (log_bt_last != NULL && log_bt_last->next != NULL) {
return true;
}
if (log_thr_last != NULL && log_thr_last->next != NULL) {
return true;
}
if (log_alloc_last != NULL && log_alloc_last->next != NULL) {
return true;
}
size_t bt_count = prof_log_bt_count();
size_t thr_count = prof_log_thr_count();
size_t alloc_count = prof_log_alloc_count();
if (prof_logging_state == prof_logging_state_stopped) {
if (bt_count != 0 || thr_count != 0 || alloc_count || 0) {
return true;
}
}
prof_alloc_node_t *node = log_alloc_first;
while (node != NULL) {
if (node->alloc_bt_ind >= bt_count) {
return true;
}
if (node->free_bt_ind >= bt_count) {
return true;
}
if (node->alloc_thr_ind >= thr_count) {
return true;
}
if (node->free_thr_ind >= thr_count) {
return true;
}
if (node->alloc_time_ns > node->free_time_ns) {
return true;
}
node = node->next;
}
return false;
}
void
prof_log_dummy_set(bool new_value) {
prof_log_dummy = new_value;
}
#endif
bool
prof_log_start(tsdn_t *tsdn, const char *filename) {
if (!opt_prof || !prof_booted) {
return true;
}
bool ret = false;
size_t buf_size = PATH_MAX + 1;
malloc_mutex_lock(tsdn, &log_mtx);
if (prof_logging_state != prof_logging_state_stopped) {
ret = true;
} else if (filename == NULL) {
/* Make default name. */
malloc_snprintf(log_filename, buf_size, "%s.%d.%"FMTu64".json",
opt_prof_prefix, prof_getpid(), log_seq);
log_seq++;
prof_logging_state = prof_logging_state_started;
} else if (strlen(filename) >= buf_size) {
ret = true;
} else {
strcpy(log_filename, filename);
prof_logging_state = prof_logging_state_started;
}
if (!ret) {
nstime_update(&log_start_timestamp);
}
malloc_mutex_unlock(tsdn, &log_mtx);
return ret;
}
/* Used as an atexit function to stop logging on exit. */
static void
prof_log_stop_final(void) {
tsd_t *tsd = tsd_fetch();
prof_log_stop(tsd_tsdn(tsd));
}
struct prof_emitter_cb_arg_s {
int fd;
ssize_t ret;
};
static void
prof_emitter_write_cb(void *opaque, const char *to_write) {
struct prof_emitter_cb_arg_s *arg =
(struct prof_emitter_cb_arg_s *)opaque;
size_t bytes = strlen(to_write);
#ifdef JEMALLOC_JET
if (prof_log_dummy) {
return;
}
#endif
arg->ret = write(arg->fd, (void *)to_write, bytes);
}
/*
* prof_log_emit_{...} goes through the appropriate linked list, emitting each
* node to the json and deallocating it.
*/
static void
prof_log_emit_threads(tsd_t *tsd, emitter_t *emitter) {
emitter_json_array_kv_begin(emitter, "threads");
prof_thr_node_t *thr_node = log_thr_first;
prof_thr_node_t *thr_old_node;
while (thr_node != NULL) {
emitter_json_object_begin(emitter);
emitter_json_kv(emitter, "thr_uid", emitter_type_uint64,
&thr_node->thr_uid);
char *thr_name = thr_node->name;
emitter_json_kv(emitter, "thr_name", emitter_type_string,
&thr_name);
emitter_json_object_end(emitter);
thr_old_node = thr_node;
thr_node = thr_node->next;
idalloctm(tsd_tsdn(tsd), thr_old_node, NULL, NULL, true, true);
}
emitter_json_array_end(emitter);
}
static void
prof_log_emit_traces(tsd_t *tsd, emitter_t *emitter) {
emitter_json_array_kv_begin(emitter, "stack_traces");
prof_bt_node_t *bt_node = log_bt_first;
prof_bt_node_t *bt_old_node;
/*
* Calculate how many hex digits we need: twice number of bytes, two for
* "0x", and then one more for terminating '\0'.
*/
char buf[2 * sizeof(intptr_t) + 3];
size_t buf_sz = sizeof(buf);
while (bt_node != NULL) {
emitter_json_array_begin(emitter);
size_t i;
for (i = 0; i < bt_node->bt.len; i++) {
malloc_snprintf(buf, buf_sz, "%p", bt_node->bt.vec[i]);
char *trace_str = buf;
emitter_json_value(emitter, emitter_type_string,
&trace_str);
}
emitter_json_array_end(emitter);
bt_old_node = bt_node;
bt_node = bt_node->next;
idalloctm(tsd_tsdn(tsd), bt_old_node, NULL, NULL, true, true);
}
emitter_json_array_end(emitter);
}
static void
prof_log_emit_allocs(tsd_t *tsd, emitter_t *emitter) {
emitter_json_array_kv_begin(emitter, "allocations");
prof_alloc_node_t *alloc_node = log_alloc_first;
prof_alloc_node_t *alloc_old_node;
while (alloc_node != NULL) {
emitter_json_object_begin(emitter);
emitter_json_kv(emitter, "alloc_thread", emitter_type_size,
&alloc_node->alloc_thr_ind);
emitter_json_kv(emitter, "free_thread", emitter_type_size,
&alloc_node->free_thr_ind);
emitter_json_kv(emitter, "alloc_trace", emitter_type_size,
&alloc_node->alloc_bt_ind);
emitter_json_kv(emitter, "free_trace", emitter_type_size,
&alloc_node->free_bt_ind);
emitter_json_kv(emitter, "alloc_timestamp",
emitter_type_uint64, &alloc_node->alloc_time_ns);
emitter_json_kv(emitter, "free_timestamp", emitter_type_uint64,
&alloc_node->free_time_ns);
emitter_json_kv(emitter, "usize", emitter_type_uint64,
&alloc_node->usize);
emitter_json_object_end(emitter);
alloc_old_node = alloc_node;
alloc_node = alloc_node->next;
idalloctm(tsd_tsdn(tsd), alloc_old_node, NULL, NULL, true,
true);
}
emitter_json_array_end(emitter);
}
static void
prof_log_emit_metadata(emitter_t *emitter) {
emitter_json_object_kv_begin(emitter, "info");
nstime_t now = NSTIME_ZERO_INITIALIZER;
nstime_update(&now);
uint64_t ns = nstime_ns(&now) - nstime_ns(&log_start_timestamp);
emitter_json_kv(emitter, "duration", emitter_type_uint64, &ns);
char *vers = JEMALLOC_VERSION;
emitter_json_kv(emitter, "version",
emitter_type_string, &vers);
emitter_json_kv(emitter, "lg_sample_rate",
emitter_type_int, &lg_prof_sample);
int pid = prof_getpid();
emitter_json_kv(emitter, "pid", emitter_type_int, &pid);
emitter_json_object_end(emitter);
}
#define PROF_LOG_STOP_BUFSIZE PROF_DUMP_BUFSIZE
bool
prof_log_stop(tsdn_t *tsdn) {
if (!opt_prof || !prof_booted) {
return true;
}
tsd_t *tsd = tsdn_tsd(tsdn);
malloc_mutex_lock(tsdn, &log_mtx);
if (prof_logging_state != prof_logging_state_started) {
malloc_mutex_unlock(tsdn, &log_mtx);
return true;
}
/*
* Set the state to dumping. We'll set it to stopped when we're done.
* Since other threads won't be able to start/stop/log when the state is
* dumping, we don't have to hold the lock during the whole method.
*/
prof_logging_state = prof_logging_state_dumping;
malloc_mutex_unlock(tsdn, &log_mtx);
emitter_t emitter;
/* Create a file. */
int fd;
#ifdef JEMALLOC_JET
if (prof_log_dummy) {
fd = 0;
} else {
fd = creat(log_filename, 0644);
}
#else
fd = creat(log_filename, 0644);
#endif
if (fd == -1) {
malloc_printf("<jemalloc>: creat() for log file \"%s\" "
" failed with %d\n", log_filename, errno);
if (opt_abort) {
abort();
}
return true;
}
struct prof_emitter_cb_arg_s arg;
arg.fd = fd;
char *prof_log_stop_buf = (char *)iallocztm(tsdn,
PROF_LOG_STOP_BUFSIZE, sz_size2index(PROF_LOG_STOP_BUFSIZE),
false, NULL, true, arena_get(TSDN_NULL, 0, true), true);
buf_writer_arg_t prof_log_stop_buf_arg = {prof_emitter_write_cb, &arg,
prof_log_stop_buf, PROF_LOG_STOP_BUFSIZE - 1, 0};
/* Emit to json. */
emitter_init(&emitter, emitter_output_json_compact,
buffered_write_cb, &prof_log_stop_buf_arg);
emitter_begin(&emitter);
prof_log_emit_metadata(&emitter);
prof_log_emit_threads(tsd, &emitter);
prof_log_emit_traces(tsd, &emitter);
prof_log_emit_allocs(tsd, &emitter);
emitter_end(&emitter);
buf_writer_flush(&prof_log_stop_buf_arg);
idalloctm(tsdn, prof_log_stop_buf, NULL, NULL, true, true);
/* Reset global state. */
if (log_tables_initialized) {
ckh_delete(tsd, &log_bt_node_set);
ckh_delete(tsd, &log_thr_node_set);
}
log_tables_initialized = false;
log_bt_index = 0;
log_thr_index = 0;
log_bt_first = NULL;
log_bt_last = NULL;
log_thr_first = NULL;
log_thr_last = NULL;
log_alloc_first = NULL;
log_alloc_last = NULL;
malloc_mutex_lock(tsdn, &log_mtx);
prof_logging_state = prof_logging_state_stopped;
malloc_mutex_unlock(tsdn, &log_mtx);
#ifdef JEMALLOC_JET
if (prof_log_dummy) {
return false;
}
#endif
return close(fd) || arg.ret == -1;
}
#undef PROF_LOG_STOP_BUFSIZE
bool prof_log_init(tsd_t *tsd) {
if (opt_prof_log) {
prof_log_start(tsd_tsdn(tsd), NULL);
}
if (atexit(prof_log_stop_final) != 0) {
malloc_write("<jemalloc>: Error in atexit() "
"for logging\n");
if (opt_abort) {
abort();
}
}
if (malloc_mutex_init(&log_mtx, "prof_log",
WITNESS_RANK_PROF_LOG, malloc_mutex_rank_exclusive)) {
return true;
}
if (ckh_new(tsd, &log_bt_node_set, PROF_CKH_MINITEMS,
prof_bt_node_hash, prof_bt_node_keycomp)) {
return true;
}
if (ckh_new(tsd, &log_thr_node_set, PROF_CKH_MINITEMS,
prof_thr_node_hash, prof_thr_node_keycomp)) {
return true;
}
log_tables_initialized = true;
return false;
}
/******************************************************************************/