server-skynet-source-3rd-je.../test/integration/allocm.c

165 lines
4.3 KiB
C
Raw Normal View History

Refactor to support more varied testing. Refactor the test harness to support three types of tests: - unit: White box unit tests. These tests have full access to all internal jemalloc library symbols. Though in actuality all symbols are prefixed by jet_, macro-based name mangling abstracts this away from test code. - integration: Black box integration tests. These tests link with the installable shared jemalloc library, and with the exception of some utility code and configure-generated macro definitions, they have no access to jemalloc internals. - stress: Black box stress tests. These tests link with the installable shared jemalloc library, as well as with an internal allocator with symbols prefixed by jet_ (same as for unit tests) that can be used to allocate data structures that are internal to the test code. Move existing tests into test/{unit,integration}/ as appropriate. Split out internal parts of jemalloc_defs.h.in and put them in jemalloc_internal_defs.h.in. This reduces internals exposure to applications that #include <jemalloc/jemalloc.h>. Refactor jemalloc.h header generation so that a single header file results, and the prototypes can be used to generate jet_ prototypes for tests. Split jemalloc.h.in into multiple parts (jemalloc_defs.h.in, jemalloc_macros.h.in, jemalloc_protos.h.in, jemalloc_mangle.h.in) and use a shell script to generate a unified jemalloc.h at configure time. Change the default private namespace prefix from "" to "je_". Add missing private namespace mangling. Remove hard-coded private_namespace.h. Instead generate it and private_unnamespace.h from private_symbols.txt. Use similar logic for public symbols, which aids in name mangling for jet_ symbols. Add test_warn() and test_fail(). Replace existing exit(1) calls with test_fail() calls.
2013-12-01 07:25:42 +08:00
#include "test/jemalloc_test.h"
#define CHUNK 0x400000
/* #define MAXALIGN ((size_t)UINT64_C(0x80000000000)) */
#define MAXALIGN ((size_t)0x2000000LU)
#define NITER 4
TEST_BEGIN(test_basic)
{
size_t nsz, rsz, sz;
void *p;
sz = 42;
nsz = 0;
assert_d_eq(nallocm(&nsz, sz, 0), ALLOCM_SUCCESS,
"Unexpected nallocm() error");
rsz = 0;
assert_d_eq(allocm(&p, &rsz, sz, 0), ALLOCM_SUCCESS,
"Unexpected allocm() error");
assert_zu_ge(rsz, sz, "Real size smaller than expected");
assert_zu_eq(nsz, rsz, "nallocm()/allocm() rsize mismatch");
assert_d_eq(dallocm(p, 0), ALLOCM_SUCCESS,
"Unexpected dallocm() error");
assert_d_eq(allocm(&p, NULL, sz, 0), ALLOCM_SUCCESS,
"Unexpected allocm() error");
assert_d_eq(dallocm(p, 0), ALLOCM_SUCCESS,
"Unexpected dallocm() error");
nsz = 0;
assert_d_eq(nallocm(&nsz, sz, ALLOCM_ZERO), ALLOCM_SUCCESS,
"Unexpected nallocm() error");
rsz = 0;
assert_d_eq(allocm(&p, &rsz, sz, ALLOCM_ZERO), ALLOCM_SUCCESS,
"Unexpected allocm() error");
assert_zu_eq(nsz, rsz, "nallocm()/allocm() rsize mismatch");
assert_d_eq(dallocm(p, 0), ALLOCM_SUCCESS,
"Unexpected dallocm() error");
}
TEST_END
TEST_BEGIN(test_alignment_errors)
{
void *p;
size_t nsz, rsz, sz, alignment;
#if LG_SIZEOF_PTR == 3
alignment = UINT64_C(0x8000000000000000);
sz = UINT64_C(0x8000000000000000);
#else
alignment = 0x80000000LU;
sz = 0x80000000LU;
#endif
nsz = 0;
assert_d_ne(nallocm(&nsz, sz, ALLOCM_ALIGN(alignment)), ALLOCM_SUCCESS,
"Expected error for nallocm(&nsz, %zu, %#x)",
sz, ALLOCM_ALIGN(alignment));
rsz = 0;
assert_d_ne(allocm(&p, &rsz, sz, ALLOCM_ALIGN(alignment)),
ALLOCM_SUCCESS, "Expected error for allocm(&p, %zu, %#x)",
sz, ALLOCM_ALIGN(alignment));
assert_zu_eq(nsz, rsz, "nallocm()/allocm() rsize mismatch");
#if LG_SIZEOF_PTR == 3
alignment = UINT64_C(0x4000000000000000);
sz = UINT64_C(0x8400000000000001);
#else
alignment = 0x40000000LU;
sz = 0x84000001LU;
#endif
nsz = 0;
assert_d_eq(nallocm(&nsz, sz, ALLOCM_ALIGN(alignment)), ALLOCM_SUCCESS,
"Unexpected nallocm() error");
rsz = 0;
assert_d_ne(allocm(&p, &rsz, sz, ALLOCM_ALIGN(alignment)),
ALLOCM_SUCCESS, "Expected error for allocm(&p, %zu, %#x)",
sz, ALLOCM_ALIGN(alignment));
alignment = 0x10LU;
#if LG_SIZEOF_PTR == 3
sz = UINT64_C(0xfffffffffffffff0);
#else
sz = 0xfffffff0LU;
#endif
nsz = 0;
assert_d_ne(nallocm(&nsz, sz, ALLOCM_ALIGN(alignment)), ALLOCM_SUCCESS,
"Expected error for nallocm(&nsz, %zu, %#x)",
sz, ALLOCM_ALIGN(alignment));
rsz = 0;
assert_d_ne(allocm(&p, &rsz, sz, ALLOCM_ALIGN(alignment)),
ALLOCM_SUCCESS, "Expected error for allocm(&p, %zu, %#x)",
sz, ALLOCM_ALIGN(alignment));
assert_zu_eq(nsz, rsz, "nallocm()/allocm() rsize mismatch");
}
TEST_END
TEST_BEGIN(test_alignment_and_size)
{
int r;
size_t nsz, rsz, sz, alignment, total;
unsigned i;
void *ps[NITER];
for (i = 0; i < NITER; i++)
ps[i] = NULL;
for (alignment = 8;
alignment <= MAXALIGN;
alignment <<= 1) {
total = 0;
for (sz = 1;
sz < 3 * alignment && sz < (1U << 31);
sz += (alignment >> (LG_SIZEOF_PTR-1)) - 1) {
for (i = 0; i < NITER; i++) {
nsz = 0;
r = nallocm(&nsz, sz, ALLOCM_ALIGN(alignment) |
ALLOCM_ZERO);
assert_d_eq(r, ALLOCM_SUCCESS,
"nallocm() error for alignment=%zu, "
"size=%zu (%#zx): %d",
alignment, sz, sz, r);
rsz = 0;
r = allocm(&ps[i], &rsz, sz,
ALLOCM_ALIGN(alignment) | ALLOCM_ZERO);
assert_d_eq(r, ALLOCM_SUCCESS,
"allocm() error for alignment=%zu, "
"size=%zu (%#zx): %d",
alignment, sz, sz, r);
assert_zu_ge(rsz, sz,
"Real size smaller than expected for "
"alignment=%zu, size=%zu", alignment, sz);
assert_zu_eq(nsz, rsz,
"nallocm()/allocm() rsize mismatch for "
"alignment=%zu, size=%zu", alignment, sz);
assert_ptr_null(
(void *)((uintptr_t)ps[i] & (alignment-1)),
"%p inadequately aligned for"
" alignment=%zu, size=%zu", ps[i],
alignment, sz);
sallocm(ps[i], &rsz, 0);
total += rsz;
if (total >= (MAXALIGN << 1))
break;
}
for (i = 0; i < NITER; i++) {
if (ps[i] != NULL) {
dallocm(ps[i], 0);
ps[i] = NULL;
}
}
}
}
}
TEST_END
int
main(void)
{
return (test(
test_basic,
test_alignment_errors,
test_alignment_and_size));
}