server-skynet-source-3rd-je.../jemalloc/src/prof.c

1174 lines
24 KiB
C
Raw Normal View History

#define JEMALLOC_PROF_C_
#include "internal/jemalloc_internal.h"
#ifdef JEMALLOC_PROF
/******************************************************************************/
#ifdef JEMALLOC_PROF_LIBGCC
#include <unwind.h>
#endif
#ifdef JEMALLOC_PROF_LIBUNWIND
#define UNW_LOCAL_ONLY
#include <libunwind.h>
#endif
/******************************************************************************/
/* Data. */
bool opt_prof = false;
size_t opt_lg_prof_bt_max = 2;
size_t opt_lg_prof_interval = LG_PROF_INTERVAL_DEFAULT;
bool opt_prof_udump = false;
bool opt_prof_leak = false;
/*
* Global hash of (prof_bt_t *)-->(prof_ctx_t *). This is the master data
* structure that knows about all backtraces ever captured.
*/
static ckh_t bt2ctx;
static malloc_mutex_t bt2ctx_mtx;
/*
* Thread-specific hash of (prof_bt_t *)-->(prof_thr_cnt_t *). Each thread
* keeps a cache of backtraces, with associated thread-specific prof_thr_cnt_t
* objects. Other threads may read the prof_thr_cnt_t contents, but no others
* will ever write them.
*
* Upon thread exit, the thread must merge all the prof_thr_cnt_t counter data
* into the associated prof_ctx_t objects, and unlink/free the prof_thr_cnt_t
* objects.
*/
static __thread ckh_t *bt2cnt_tls JEMALLOC_ATTR(tls_model("initial-exec"));
/*
* Same contents as b2cnt, but initialized such that the TSD destructor is
* called when a thread exits, so that bt2cnt_tls contents can be merged,
* unlinked, and deallocated.
*/
static pthread_key_t bt2cnt_tsd;
/* (1U << opt_lg_prof_bt_max). */
static unsigned prof_bt_max;
/*
* Per arena profile dump interval, measured in bytes allocated. Each arena
* triggers a profile dump when it reaches this threshold. The effect is that
* the interval between profile dumps is never longer than (prof_interval *
* narenas), though the actual interval between dumps will tend to be sporadic,
* and the interval will on average be prof_interval.
*/
static uint64_t prof_interval;
static malloc_mutex_t prof_dump_seq_mtx;
static uint64_t prof_dump_seq;
static uint64_t prof_dump_iseq;
static uint64_t prof_dump_mseq;
static uint64_t prof_dump_useq;
/*
* This buffer is rather large for stack allocation, so use a single buffer for
* all profile dumps. The buffer is implicitly protected by bt2ctx_mtx, since
* it must be locked anyway during dumping.
*/
static char prof_dump_buf[PROF_DUMP_BUF_SIZE];
static unsigned prof_dump_buf_end;
static int prof_dump_fd;
/* Do not dump any profiles until bootstrapping is complete. */
static bool prof_booted = false;
static malloc_mutex_t enq_mtx;
static bool enq;
static bool enq_udump;
/******************************************************************************/
/* Function prototypes for non-inline static functions. */
static prof_bt_t *bt_dup(prof_bt_t *bt);
static void bt_init(prof_bt_t *bt, void **vec);
#ifdef JEMALLOC_PROF_LIBGCC
static _Unwind_Reason_Code prof_unwind_init_callback(
struct _Unwind_Context *context, void *arg);
static _Unwind_Reason_Code prof_unwind_callback(
struct _Unwind_Context *context, void *arg);
#endif
static void prof_backtrace(prof_bt_t *bt, unsigned nignore, unsigned max);
static prof_thr_cnt_t *prof_lookup(prof_bt_t *bt);
static void prof_cnt_set(const void *ptr, prof_thr_cnt_t *cnt);
static void prof_flush(void);
static void prof_write(const char *s);
static void prof_ctx_merge(prof_ctx_t *ctx, prof_cnt_t *cnt_all,
size_t *leak_nctx);
static void prof_dump_ctx(prof_ctx_t *ctx, prof_bt_t *bt);
static void prof_dump_maps(void);
static void prof_dump(const char *filename, bool leakcheck);
static void prof_dump_filename(char *filename, char v, int64_t vseq);
static void prof_fdump(void);
static void prof_bt_hash(const void *key, unsigned minbits, size_t *hash1,
size_t *hash2);
static bool prof_bt_keycomp(const void *k1, const void *k2);
static void bt2cnt_thread_cleanup(void *arg);
/******************************************************************************/
static void
bt_init(prof_bt_t *bt, void **vec)
{
bt->vec = vec;
bt->len = 0;
}
static prof_bt_t *
bt_dup(prof_bt_t *bt)
{
prof_bt_t *ret;
/*
* Create a single allocation that has space for vec immediately
* following the prof_bt_t structure. The backtraces that get
* stored in the backtrace caches are copied from stack-allocated
* temporary variables, so size is known at creation time. Making this
* a contiguous object improves cache locality.
*/
ret = (prof_bt_t *)imalloc(QUANTUM_CEILING(sizeof(prof_bt_t)) +
(bt->len * sizeof(void *)));
if (ret == NULL)
return (NULL);
ret->vec = (void **)((uintptr_t)ret +
QUANTUM_CEILING(sizeof(prof_bt_t)));
memcpy(ret->vec, bt->vec, bt->len * sizeof(void *));
ret->len = bt->len;
return (ret);
}
static inline void
prof_enter(void)
{
malloc_mutex_lock(&enq_mtx);
enq = true;
malloc_mutex_unlock(&enq_mtx);
malloc_mutex_lock(&bt2ctx_mtx);
}
static inline void
prof_leave(void)
{
bool udump;
malloc_mutex_unlock(&bt2ctx_mtx);
malloc_mutex_lock(&enq_mtx);
enq = false;
udump = enq_udump;
enq_udump = false;
malloc_mutex_unlock(&enq_mtx);
if (udump)
prof_udump();
}
#ifdef JEMALLOC_PROF_LIBGCC
static _Unwind_Reason_Code
prof_unwind_init_callback(struct _Unwind_Context *context, void *arg)
{
return (_URC_NO_REASON);
}
static _Unwind_Reason_Code
prof_unwind_callback(struct _Unwind_Context *context, void *arg)
{
prof_unwind_data_t *data = (prof_unwind_data_t *)arg;
if (data->nignore > 0)
data->nignore--;
else {
data->bt->vec[data->bt->len] = (void *)_Unwind_GetIP(context);
data->bt->len++;
if (data->bt->len == data->max)
return (_URC_END_OF_STACK);
}
return (_URC_NO_REASON);
}
static void
prof_backtrace(prof_bt_t *bt, unsigned nignore, unsigned max)
{
prof_unwind_data_t data = {bt, nignore, max};
_Unwind_Backtrace(prof_unwind_callback, &data);
}
#elif defined(JEMALLOC_PROF_LIBUNWIND)
static void
prof_backtrace(prof_bt_t *bt, unsigned nignore, unsigned max)
{
unw_context_t uc;
unw_cursor_t cursor;
unsigned i;
int err;
assert(bt->len == 0);
assert(bt->vec != NULL);
assert(max <= (1U << opt_lg_prof_bt_max));
unw_getcontext(&uc);
unw_init_local(&cursor, &uc);
/* Throw away (nignore+1) stack frames, if that many exist. */
for (i = 0; i < nignore + 1; i++) {
err = unw_step(&cursor);
if (err <= 0)
return;
}
/*
* Iterate over stack frames until there are no more. Heap-allocate
* and iteratively grow a larger bt if necessary.
*/
for (i = 0; i < max; i++) {
unw_get_reg(&cursor, UNW_REG_IP, (unw_word_t *)&bt->vec[i]);
err = unw_step(&cursor);
if (err <= 0) {
bt->len = i;
break;
}
}
}
#else
static void
prof_backtrace(prof_bt_t *bt, unsigned nignore, unsigned max)
{
#define NIGNORE 3
#define BT_FRAME(i) \
if ((i) < NIGNORE + max) { \
void *p; \
if (__builtin_frame_address(i) == 0) \
return; \
p = __builtin_return_address(i); \
if (p == NULL) \
return; \
if (i >= NIGNORE) { \
bt->vec[(i) - NIGNORE] = p; \
bt->len = (i) - NIGNORE + 1; \
} \
} else \
return;
assert(max <= (1U << opt_lg_prof_bt_max));
/*
* Ignore the first three frames, since they are:
*
* 0: prof_backtrace()
* 1: prof_alloc_prep()
* 2: malloc(), calloc(), etc.
*/
#if 1
assert(nignore + 1 == NIGNORE);
#else
BT_FRAME(0)
BT_FRAME(1)
BT_FRAME(2)
#endif
BT_FRAME(3)
BT_FRAME(4)
BT_FRAME(5)
BT_FRAME(6)
BT_FRAME(7)
BT_FRAME(8)
BT_FRAME(9)
BT_FRAME(10)
BT_FRAME(11)
BT_FRAME(12)
BT_FRAME(13)
BT_FRAME(14)
BT_FRAME(15)
BT_FRAME(16)
BT_FRAME(17)
BT_FRAME(18)
BT_FRAME(19)
BT_FRAME(20)
BT_FRAME(21)
BT_FRAME(22)
BT_FRAME(23)
BT_FRAME(24)
BT_FRAME(25)
BT_FRAME(26)
BT_FRAME(27)
BT_FRAME(28)
BT_FRAME(29)
BT_FRAME(30)
BT_FRAME(31)
BT_FRAME(32)
BT_FRAME(33)
BT_FRAME(34)
BT_FRAME(35)
BT_FRAME(36)
BT_FRAME(37)
BT_FRAME(38)
BT_FRAME(39)
BT_FRAME(40)
BT_FRAME(41)
BT_FRAME(42)
BT_FRAME(43)
BT_FRAME(44)
BT_FRAME(45)
BT_FRAME(46)
BT_FRAME(47)
BT_FRAME(48)
BT_FRAME(49)
BT_FRAME(50)
BT_FRAME(51)
BT_FRAME(52)
BT_FRAME(53)
BT_FRAME(54)
BT_FRAME(55)
BT_FRAME(56)
BT_FRAME(57)
BT_FRAME(58)
BT_FRAME(59)
BT_FRAME(60)
BT_FRAME(61)
BT_FRAME(62)
BT_FRAME(63)
BT_FRAME(64)
BT_FRAME(65)
BT_FRAME(66)
BT_FRAME(67)
BT_FRAME(68)
BT_FRAME(69)
BT_FRAME(70)
BT_FRAME(71)
BT_FRAME(72)
BT_FRAME(73)
BT_FRAME(74)
BT_FRAME(75)
BT_FRAME(76)
BT_FRAME(77)
BT_FRAME(78)
BT_FRAME(79)
BT_FRAME(80)
BT_FRAME(81)
BT_FRAME(82)
BT_FRAME(83)
BT_FRAME(84)
BT_FRAME(85)
BT_FRAME(86)
BT_FRAME(87)
BT_FRAME(88)
BT_FRAME(89)
BT_FRAME(90)
BT_FRAME(91)
BT_FRAME(92)
BT_FRAME(93)
BT_FRAME(94)
BT_FRAME(95)
BT_FRAME(96)
BT_FRAME(97)
BT_FRAME(98)
BT_FRAME(99)
BT_FRAME(100)
BT_FRAME(101)
BT_FRAME(102)
BT_FRAME(103)
BT_FRAME(104)
BT_FRAME(105)
BT_FRAME(106)
BT_FRAME(107)
BT_FRAME(108)
BT_FRAME(109)
BT_FRAME(110)
BT_FRAME(111)
BT_FRAME(112)
BT_FRAME(113)
BT_FRAME(114)
BT_FRAME(115)
BT_FRAME(116)
BT_FRAME(117)
BT_FRAME(118)
BT_FRAME(119)
BT_FRAME(120)
BT_FRAME(121)
BT_FRAME(122)
BT_FRAME(123)
BT_FRAME(124)
BT_FRAME(125)
BT_FRAME(126)
BT_FRAME(127)
/* Extras to compensate for NIGNORE. */
BT_FRAME(128)
BT_FRAME(129)
BT_FRAME(130)
#undef BT_FRAME
}
#endif
static prof_thr_cnt_t *
prof_lookup(prof_bt_t *bt)
{
prof_thr_cnt_t *ret;
ckh_t *bt2cnt = bt2cnt_tls;
if (bt2cnt == NULL) {
/* Initialize an empty cache for this thread. */
bt2cnt = (ckh_t *)imalloc(sizeof(ckh_t));
if (bt2cnt == NULL)
return (NULL);
if (ckh_new(bt2cnt, PROF_CKH_MINITEMS, prof_bt_hash,
prof_bt_keycomp)) {
idalloc(bt2cnt);
return (NULL);
}
bt2cnt_tls = bt2cnt;
}
if (ckh_search(bt2cnt, bt, NULL, (void **)&ret)) {
prof_bt_t *btkey;
prof_ctx_t *ctx;
/*
* This thread's cache lacks bt. Look for it in the global
* cache.
*/
prof_enter();
if (ckh_search(&bt2ctx, bt, (void **)&btkey, (void **)&ctx)) {
/* bt has never been seen before. Insert it. */
ctx = (prof_ctx_t *)imalloc(sizeof(prof_ctx_t));
if (ctx == NULL) {
prof_leave();
return (NULL);
}
btkey = bt_dup(bt);
if (btkey == NULL) {
prof_leave();
idalloc(ctx);
return (NULL);
}
if (malloc_mutex_init(&ctx->lock)) {
prof_leave();
idalloc(btkey);
idalloc(ctx);
return (NULL);
}
memset(&ctx->cnt_merged, 0, sizeof(prof_cnt_t));
ql_new(&ctx->cnts_ql);
if (ckh_insert(&bt2ctx, btkey, ctx)) {
/* OOM. */
prof_leave();
idalloc(btkey);
idalloc(ctx);
return (NULL);
}
}
prof_leave();
/* Link a prof_thd_cnt_t into ctx for this thread. */
ret = (prof_thr_cnt_t *)imalloc(sizeof(prof_thr_cnt_t));
if (ret == NULL)
return (NULL);
ql_elm_new(ret, link);
ret->ctx = ctx;
ret->epoch = 0;
memset(&ret->cnts, 0, sizeof(prof_cnt_t));
if (ckh_insert(bt2cnt, btkey, ret)) {
idalloc(ret);
return (NULL);
}
malloc_mutex_lock(&ctx->lock);
ql_tail_insert(&ctx->cnts_ql, ret, link);
malloc_mutex_unlock(&ctx->lock);
}
return (ret);
}
prof_thr_cnt_t *
prof_alloc_prep(void)
{
prof_thr_cnt_t *ret;
void *vec[prof_bt_max];
prof_bt_t bt;
bt_init(&bt, vec);
prof_backtrace(&bt, 2, prof_bt_max);
ret = prof_lookup(&bt);
return (ret);
}
prof_thr_cnt_t *
prof_cnt_get(const void *ptr)
{
prof_thr_cnt_t *ret;
arena_chunk_t *chunk;
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk != ptr) {
/* Region. */
assert(chunk->arena->magic == ARENA_MAGIC);
ret = arena_prof_cnt_get(ptr);
} else
ret = huge_prof_cnt_get(ptr);
return (ret);
}
static void
prof_cnt_set(const void *ptr, prof_thr_cnt_t *cnt)
{
arena_chunk_t *chunk;
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk != ptr) {
/* Region. */
assert(chunk->arena->magic == ARENA_MAGIC);
arena_prof_cnt_set(ptr, cnt);
} else
huge_prof_cnt_set(ptr, cnt);
}
void
prof_malloc(const void *ptr, prof_thr_cnt_t *cnt)
{
size_t size = isalloc(ptr);
prof_cnt_set(ptr, cnt);
cnt->epoch++;
/*********/
mb_write();
/*********/
cnt->cnts.curobjs++;
cnt->cnts.curbytes += size;
cnt->cnts.accumobjs++;
cnt->cnts.accumbytes += size;
/*********/
mb_write();
/*********/
cnt->epoch++;
/*********/
mb_write();
/*********/
}
void
prof_realloc(const void *ptr, prof_thr_cnt_t *cnt, const void *old_ptr,
size_t old_size, prof_thr_cnt_t *old_cnt)
{
size_t size = isalloc(ptr);
prof_cnt_set(ptr, cnt);
if (old_cnt != NULL)
old_cnt->epoch++;
if (cnt != NULL)
cnt->epoch++;
/*********/
mb_write();
/*********/
if (old_cnt != NULL) {
old_cnt->cnts.curobjs--;
old_cnt->cnts.curbytes -= old_size;
}
if (cnt != NULL) {
cnt->cnts.curobjs++;
cnt->cnts.curbytes += size;
cnt->cnts.accumobjs++;
cnt->cnts.accumbytes += size;
}
/*********/
mb_write();
/*********/
if (old_cnt != NULL)
old_cnt->epoch++;
if (cnt != NULL)
cnt->epoch++;
/*********/
mb_write(); /* Not strictly necessary. */
}
void
prof_free(const void *ptr)
{
prof_thr_cnt_t *cnt = prof_cnt_get(ptr);
size_t size = isalloc(ptr);
cnt->epoch++;
/*********/
mb_write();
/*********/
cnt->cnts.curobjs--;
cnt->cnts.curbytes -= size;
/*********/
mb_write();
/*********/
cnt->epoch++;
/*********/
mb_write();
/*********/
}
static void
prof_flush(void)
{
ssize_t err;
err = write(prof_dump_fd, prof_dump_buf, prof_dump_buf_end);
if (err == -1) {
malloc_write4("<jemalloc>",
": write() failed during heap profile flush", "\n", "");
if (opt_abort)
abort();
}
prof_dump_buf_end = 0;
}
static void
prof_write(const char *s)
{
unsigned i, slen, n;
i = 0;
slen = strlen(s);
while (i < slen) {
/* Flush the buffer if it is full. */
if (prof_dump_buf_end == PROF_DUMP_BUF_SIZE)
prof_flush();
if (prof_dump_buf_end + slen <= PROF_DUMP_BUF_SIZE) {
/* Finish writing. */
n = slen - i;
} else {
/* Write as much of s as will fit. */
n = PROF_DUMP_BUF_SIZE - prof_dump_buf_end;
}
memcpy(&prof_dump_buf[prof_dump_buf_end], &s[i], n);
prof_dump_buf_end += n;
i += n;
}
}
static void
prof_ctx_merge(prof_ctx_t *ctx, prof_cnt_t *cnt_all, size_t *leak_nctx)
{
prof_thr_cnt_t *thr_cnt;
prof_cnt_t tcnt;
malloc_mutex_lock(&ctx->lock);
memcpy(&ctx->cnt_dump, &ctx->cnt_merged, sizeof(prof_cnt_t));
ql_foreach(thr_cnt, &ctx->cnts_ql, link) {
volatile unsigned *epoch = &thr_cnt->epoch;
while (true) {
unsigned epoch0 = *epoch;
/* Make sure epoch is even. */
if (epoch0 & 1U)
continue;
memcpy(&tcnt, &thr_cnt->cnts, sizeof(prof_cnt_t));
/* Terminate if epoch didn't change while reading. */
if (*epoch == epoch0)
break;
}
ctx->cnt_dump.curobjs += tcnt.curobjs;
ctx->cnt_dump.curbytes += tcnt.curbytes;
ctx->cnt_dump.accumobjs += tcnt.accumobjs;
ctx->cnt_dump.accumbytes += tcnt.accumbytes;
if (tcnt.curobjs != 0)
(*leak_nctx)++;
}
/* Merge into cnt_all. */
cnt_all->curobjs += ctx->cnt_dump.curobjs;
cnt_all->curbytes += ctx->cnt_dump.curbytes;
cnt_all->accumobjs += ctx->cnt_dump.accumobjs;
cnt_all->accumbytes += ctx->cnt_dump.accumbytes;
malloc_mutex_unlock(&ctx->lock);
}
static void
prof_dump_ctx(prof_ctx_t *ctx, prof_bt_t *bt)
{
char buf[UMAX2S_BUFSIZE];
unsigned i;
prof_write(umax2s(ctx->cnt_dump.curobjs, 10, buf));
prof_write(": ");
prof_write(umax2s(ctx->cnt_dump.curbytes, 10, buf));
prof_write(" [");
prof_write(umax2s(ctx->cnt_dump.accumobjs, 10, buf));
prof_write(": ");
prof_write(umax2s(ctx->cnt_dump.accumbytes, 10, buf));
prof_write("] @");
for (i = 0; i < bt->len; i++) {
prof_write(" 0x");
prof_write(umax2s((uintptr_t)bt->vec[i], 16, buf));
}
prof_write("\n");
}
static void
prof_dump_maps(void)
{
int mfd;
char buf[UMAX2S_BUFSIZE];
char *s;
unsigned i, slen;
/* /proc/<pid>/maps\0 */
char mpath[6 + UMAX2S_BUFSIZE
+ 5 + 1];
i = 0;
s = "/proc/";
slen = strlen(s);
memcpy(&mpath[i], s, slen);
i += slen;
s = umax2s(getpid(), 10, buf);
slen = strlen(s);
memcpy(&mpath[i], s, slen);
i += slen;
s = "/maps";
slen = strlen(s);
memcpy(&mpath[i], s, slen);
i += slen;
mpath[i] = '\0';
mfd = open(mpath, O_RDONLY);
if (mfd != -1) {
ssize_t nread;
prof_write("\nMAPPED_LIBRARIES:\n");
nread = 0;
do {
prof_dump_buf_end += nread;
if (prof_dump_buf_end == PROF_DUMP_BUF_SIZE) {
/* Make space in prof_dump_buf before read(). */
prof_flush();
}
nread = read(mfd, &prof_dump_buf[prof_dump_buf_end],
PROF_DUMP_BUF_SIZE - prof_dump_buf_end);
} while (nread > 0);
}
}
static void
prof_dump(const char *filename, bool leakcheck)
{
prof_cnt_t cnt_all;
size_t tabind;
prof_bt_t *bt;
prof_ctx_t *ctx;
char buf[UMAX2S_BUFSIZE];
size_t leak_nctx;
prof_enter();
prof_dump_fd = creat(filename, 0644);
if (prof_dump_fd == -1) {
malloc_write4("<jemalloc>",
": creat(\"", filename, "\", 0644) failed\n");
if (opt_abort)
abort();
prof_leave();
return;
}
/* Merge per thread profile stats, and sum them in cnt_all. */
memset(&cnt_all, 0, sizeof(prof_cnt_t));
leak_nctx = 0;
for (tabind = 0; ckh_iter(&bt2ctx, &tabind, NULL, (void **)&ctx)
== false;) {
prof_ctx_merge(ctx, &cnt_all, &leak_nctx);
}
/* Dump profile header. */
prof_write("heap profile: ");
prof_write(umax2s(cnt_all.curobjs, 10, buf));
prof_write(": ");
prof_write(umax2s(cnt_all.curbytes, 10, buf));
prof_write(" [");
prof_write(umax2s(cnt_all.accumobjs, 10, buf));
prof_write(": ");
prof_write(umax2s(cnt_all.accumbytes, 10, buf));
prof_write("] @ heapprofile\n");
/* Dump per ctx profile stats. */
for (tabind = 0; ckh_iter(&bt2ctx, &tabind, (void **)&bt, (void **)&ctx)
== false;) {
prof_dump_ctx(ctx, bt);
}
/* Dump /proc/<pid>/maps if possible. */
prof_dump_maps();
prof_flush();
close(prof_dump_fd);
prof_leave();
if (leakcheck && cnt_all.curbytes != 0) {
malloc_write4("<jemalloc>: Leak summary: ",
umax2s(cnt_all.curbytes, 10, buf),
(cnt_all.curbytes != 1) ? " bytes" : " byte", ", ");
malloc_write4(umax2s(cnt_all.curobjs, 10, buf),
(cnt_all.curobjs != 1) ? " objects" : " object", ", ", "");
malloc_write4(umax2s(leak_nctx, 10, buf),
(leak_nctx != 1) ? " contexts" : " context", "\n", "");
malloc_write4("<jemalloc>: Run pprof on \"",
filename, "\" for leak detail\n", "");
}
}
#define DUMP_FILENAME_BUFSIZE (PATH_MAX+ UMAX2S_BUFSIZE \
+ 1 \
+ UMAX2S_BUFSIZE \
+ 2 \
+ UMAX2S_BUFSIZE \
+ 5 + 1)
static void
prof_dump_filename(char *filename, char v, int64_t vseq)
{
char buf[UMAX2S_BUFSIZE];
char *s;
unsigned i, slen;
/*
* Construct a filename of the form:
*
* <prefix>.<pid>.<seq>.v<vseq>.heap\0
* or
* jeprof.<pid>.<seq>.v<vseq>.heap\0
*/
i = 0;
/*
* Use JEMALLOC_PROF_PREFIX if it's set, and if it is short enough to
* avoid overflowing DUMP_FILENAME_BUFSIZE. The result may exceed
* PATH_MAX, but creat(2) will catch that problem.
*/
if ((s = getenv("JEMALLOC_PROF_PREFIX")) != NULL
&& strlen(s) + (DUMP_FILENAME_BUFSIZE - PATH_MAX) <= PATH_MAX) {
slen = strlen(s);
memcpy(&filename[i], s, slen);
i += slen;
s = ".";
} else
s = "jeprof.";
slen = strlen(s);
memcpy(&filename[i], s, slen);
i += slen;
s = umax2s(getpid(), 10, buf);
slen = strlen(s);
memcpy(&filename[i], s, slen);
i += slen;
s = ".";
slen = strlen(s);
memcpy(&filename[i], s, slen);
i += slen;
s = umax2s(prof_dump_seq, 10, buf);
prof_dump_seq++;
slen = strlen(s);
memcpy(&filename[i], s, slen);
i += slen;
s = ".";
slen = strlen(s);
memcpy(&filename[i], s, slen);
i += slen;
filename[i] = v;
i++;
if (vseq != 0xffffffffffffffffLLU) {
s = umax2s(vseq, 10, buf);
slen = strlen(s);
memcpy(&filename[i], s, slen);
i += slen;
}
s = ".heap";
slen = strlen(s);
memcpy(&filename[i], s, slen);
i += slen;
filename[i] = '\0';
}
static void
prof_fdump(void)
{
char filename[DUMP_FILENAME_BUFSIZE];
if (prof_booted == false)
return;
malloc_mutex_lock(&prof_dump_seq_mtx);
prof_dump_filename(filename, 'f', 0xffffffffffffffffLLU);
malloc_mutex_unlock(&prof_dump_seq_mtx);
prof_dump(filename, opt_prof_leak);
}
void
prof_idump(void)
{
char filename[DUMP_FILENAME_BUFSIZE];
if (prof_booted == false)
return;
malloc_mutex_lock(&prof_dump_seq_mtx);
prof_dump_filename(filename, 'i', prof_dump_iseq);
prof_dump_iseq++;
malloc_mutex_unlock(&prof_dump_seq_mtx);
prof_dump(filename, false);
}
void
prof_mdump(void)
{
char filename[DUMP_FILENAME_BUFSIZE];
if (prof_booted == false)
return;
malloc_mutex_lock(&prof_dump_seq_mtx);
prof_dump_filename(filename, 'm', prof_dump_mseq);
prof_dump_mseq++;
malloc_mutex_unlock(&prof_dump_seq_mtx);
prof_dump(filename, false);
}
void
prof_udump(void)
{
char filename[DUMP_FILENAME_BUFSIZE];
if (prof_booted == false)
return;
malloc_mutex_lock(&enq_mtx);
if (enq) {
enq_udump = true;
malloc_mutex_unlock(&enq_mtx);
return;
}
malloc_mutex_unlock(&enq_mtx);
malloc_mutex_lock(&prof_dump_seq_mtx);
prof_dump_filename(filename, 'u', prof_dump_useq);
prof_dump_useq++;
malloc_mutex_unlock(&prof_dump_seq_mtx);
prof_dump(filename, false);
}
static void
prof_bt_hash(const void *key, unsigned minbits, size_t *hash1, size_t *hash2)
{
size_t ret1, ret2;
uint64_t h;
prof_bt_t *bt = (prof_bt_t *)key;
assert(minbits <= 32 || (SIZEOF_PTR == 8 && minbits <= 64));
assert(hash1 != NULL);
assert(hash2 != NULL);
h = hash(bt->vec, bt->len * sizeof(void *), 0x94122f335b332aeaLLU);
if (minbits <= 32) {
/*
* Avoid doing multiple hashes, since a single hash provides
* enough bits.
*/
ret1 = h & ZU(0xffffffffU);
ret2 = h >> 32;
} else {
ret1 = h;
ret2 = hash(bt->vec, bt->len * sizeof(void *),
0x8432a476666bbc13U);
}
*hash1 = ret1;
*hash2 = ret2;
}
static bool
prof_bt_keycomp(const void *k1, const void *k2)
{
const prof_bt_t *bt1 = (prof_bt_t *)k1;
const prof_bt_t *bt2 = (prof_bt_t *)k2;
if (bt1->len != bt2->len)
return (false);
return (memcmp(bt1->vec, bt2->vec, bt1->len * sizeof(void *)) == 0);
}
static void
bt2cnt_thread_cleanup(void *arg)
{
ckh_t *bt2cnt;
bt2cnt = bt2cnt_tls;
if (bt2cnt != NULL) {
ql_head(prof_thr_cnt_t) cnts_ql;
size_t tabind;
prof_thr_cnt_t *cnt;
/* Iteratively merge cnt's into the global stats. */
ql_new(&cnts_ql);
tabind = 0;
while (ckh_iter(bt2cnt, &tabind, NULL, (void **)&cnt) ==
false) {
prof_ctx_t *ctx = cnt->ctx;
/* Merge stats and detach from ctx. */
malloc_mutex_lock(&ctx->lock);
ctx->cnt_merged.curobjs += cnt->cnts.curobjs;
ctx->cnt_merged.curbytes += cnt->cnts.curbytes;
ctx->cnt_merged.accumobjs += cnt->cnts.accumobjs;
ctx->cnt_merged.accumbytes += cnt->cnts.accumbytes;
ql_remove(&ctx->cnts_ql, cnt, link);
malloc_mutex_unlock(&ctx->lock);
/*
* Stash cnt for deletion after finishing with
* ckh_iter().
*/
ql_tail_insert(&cnts_ql, cnt, link);
}
/*
* Delete the hash table now that cnts_ql has a list of all
* cnt's.
*/
ckh_delete(bt2cnt);
idalloc(bt2cnt);
bt2cnt_tls = NULL;
/* Delete cnt's. */
while ((cnt = ql_last(&cnts_ql, link)) != NULL) {
ql_remove(&cnts_ql, cnt, link);
idalloc(cnt);
}
}
}
void
prof_boot0(void)
{
/*
* opt_prof must be in its final state before any arenas are
* initialized, so this function must be executed early.
*/
if (opt_prof_leak && opt_prof == false) {
/*
* Enable opt_prof, but in such a way that profiles are never
* automatically dumped.
*/
opt_prof = true;
opt_prof_udump = false;
prof_interval = 0;
} else
prof_interval = (((uint64_t)1U) << opt_lg_prof_interval);
}
bool
prof_boot1(void)
{
if (opt_prof) {
if (ckh_new(&bt2ctx, PROF_CKH_MINITEMS, prof_bt_hash,
prof_bt_keycomp))
return (true);
if (malloc_mutex_init(&bt2ctx_mtx))
return (true);
if (pthread_key_create(&bt2cnt_tsd, bt2cnt_thread_cleanup)
!= 0) {
malloc_write4("<jemalloc>",
": Error in pthread_key_create()\n", "", "");
abort();
}
prof_bt_max = (1U << opt_lg_prof_bt_max);
if (malloc_mutex_init(&prof_dump_seq_mtx))
return (true);
if (malloc_mutex_init(&enq_mtx))
return (true);
enq = false;
enq_udump = false;
if (atexit(prof_fdump) != 0) {
malloc_write4("<jemalloc>", ": Error in atexit()\n", "",
"");
if (opt_abort)
abort();
}
}
#ifdef JEMALLOC_PROF_LIBGCC
/*
* Cause the backtracing machinery to allocate its internal state
* before enabling profiling.
*/
_Unwind_Backtrace(prof_unwind_init_callback, NULL);
#endif
prof_booted = true;
return (false);
}
void
prof_boot2(void)
{
if (opt_prof) {
/*
* Finish initializing prof_interval, now that narenas is set.
*/
prof_interval /= narenas;
}
}
/******************************************************************************/
#endif /* JEMALLOC_PROF */