server-skynet-source-3rd-je.../src/sec.c

264 lines
8.0 KiB
C
Raw Normal View History

#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"
#include "jemalloc/internal/sec.h"
static edata_t *sec_alloc(tsdn_t *tsdn, pai_t *self, size_t size,
size_t alignment, bool zero);
static bool sec_expand(tsdn_t *tsdn, pai_t *self, edata_t *edata,
size_t old_size, size_t new_size, bool zero);
static bool sec_shrink(tsdn_t *tsdn, pai_t *self, edata_t *edata,
size_t old_size, size_t new_size);
static void sec_dalloc(tsdn_t *tsdn, pai_t *self, edata_t *edata);
bool sec_init(sec_t *sec, pai_t *fallback, size_t nshards, size_t alloc_max,
size_t bytes_max) {
if (nshards > SEC_NSHARDS_MAX) {
nshards = SEC_NSHARDS_MAX;
}
for (size_t i = 0; i < nshards; i++) {
sec_shard_t *shard = &sec->shards[i];
bool err = malloc_mutex_init(&shard->mtx, "sec_shard",
WITNESS_RANK_SEC_SHARD, malloc_mutex_rank_exclusive);
if (err) {
return true;
}
shard->enabled = true;
for (pszind_t j = 0; j < SEC_NPSIZES; j++) {
edata_list_active_init(&shard->freelist[j]);
}
shard->bytes_cur = 0;
}
sec->fallback = fallback;
sec->alloc_max = alloc_max;
if (sec->alloc_max > sz_pind2sz(SEC_NPSIZES - 1)) {
sec->alloc_max = sz_pind2sz(SEC_NPSIZES - 1);
}
sec->bytes_max = bytes_max;
sec->nshards = nshards;
/*
* Initialize these last so that an improper use of an SEC whose
* initialization failed will segfault in an easy-to-spot way.
*/
sec->pai.alloc = &sec_alloc;
sec->pai.expand = &sec_expand;
sec->pai.shrink = &sec_shrink;
sec->pai.dalloc = &sec_dalloc;
return false;
}
static sec_shard_t *
sec_shard_pick(tsdn_t *tsdn, sec_t *sec) {
/*
* Eventually, we should implement affinity, tracking source shard using
* the edata_t's newly freed up fields. For now, just randomly
* distribute across all shards.
*/
if (tsdn_null(tsdn)) {
return &sec->shards[0];
}
tsd_t *tsd = tsdn_tsd(tsdn);
/*
* Use the trick from Daniel Lemire's "A fast alternative to the modulo
* reduction. Use a 64 bit number to store 32 bits, since we'll
* deliberately overflow when we multiply by the number of shards.
*/
uint64_t rand32 = prng_lg_range_u64(tsd_prng_statep_get(tsd), 32);
uint32_t idx = (uint32_t)((rand32 * (uint64_t)sec->nshards) >> 32);
return &sec->shards[idx];
}
static edata_t *
sec_shard_alloc_locked(tsdn_t *tsdn, sec_t *sec, sec_shard_t *shard,
pszind_t pszind) {
malloc_mutex_assert_owner(tsdn, &shard->mtx);
if (!shard->enabled) {
return NULL;
}
edata_t *edata = edata_list_active_first(&shard->freelist[pszind]);
if (edata != NULL) {
edata_list_active_remove(&shard->freelist[pszind], edata);
assert(edata_size_get(edata) <= shard->bytes_cur);
shard->bytes_cur -= edata_size_get(edata);
}
return edata;
}
static edata_t *
sec_alloc(tsdn_t *tsdn, pai_t *self, size_t size, size_t alignment, bool zero) {
assert((size & PAGE_MASK) == 0);
sec_t *sec = (sec_t *)self;
if (zero || alignment > PAGE || sec->nshards == 0
|| size > sec->alloc_max) {
return pai_alloc(tsdn, sec->fallback, size, alignment, zero);
}
pszind_t pszind = sz_psz2ind(size);
sec_shard_t *shard = sec_shard_pick(tsdn, sec);
malloc_mutex_lock(tsdn, &shard->mtx);
edata_t *edata = sec_shard_alloc_locked(tsdn, sec, shard, pszind);
malloc_mutex_unlock(tsdn, &shard->mtx);
if (edata == NULL) {
/*
* See the note in dalloc, below; really, we should add a
* batch_alloc method to the PAI and get more than one extent at
* a time.
*/
edata = pai_alloc(tsdn, sec->fallback, size, alignment, zero);
}
return edata;
}
static bool
sec_expand(tsdn_t *tsdn, pai_t *self, edata_t *edata, size_t old_size,
size_t new_size, bool zero) {
sec_t *sec = (sec_t *)self;
return pai_expand(tsdn, sec->fallback, edata, old_size, new_size, zero);
}
static bool
sec_shrink(tsdn_t *tsdn, pai_t *self, edata_t *edata, size_t old_size,
size_t new_size) {
sec_t *sec = (sec_t *)self;
return pai_shrink(tsdn, sec->fallback, edata, old_size, new_size);
}
static void
sec_do_flush_locked(tsdn_t *tsdn, sec_t *sec, sec_shard_t *shard) {
malloc_mutex_assert_owner(tsdn, &shard->mtx);
shard->bytes_cur = 0;
edata_list_active_t to_flush;
edata_list_active_init(&to_flush);
for (pszind_t i = 0; i < SEC_NPSIZES; i++) {
edata_list_active_concat(&to_flush, &shard->freelist[i]);
}
/*
* A better way to do this would be to add a batch dalloc function to
* the pai_t. Practically, the current method turns into O(n) locks and
* unlocks at the fallback allocator. But some implementations (e.g.
* HPA) can straightforwardly do many deallocations in a single lock /
* unlock pair.
*/
while (!edata_list_active_empty(&to_flush)) {
edata_t *e = edata_list_active_first(&to_flush);
edata_list_active_remove(&to_flush, e);
pai_dalloc(tsdn, sec->fallback, e);
}
}
static void
sec_shard_dalloc_locked(tsdn_t *tsdn, sec_t *sec, sec_shard_t *shard,
edata_t *edata) {
malloc_mutex_assert_owner(tsdn, &shard->mtx);
assert(shard->bytes_cur <= sec->bytes_max);
size_t size = edata_size_get(edata);
pszind_t pszind = sz_psz2ind(size);
/*
* Prepending here results in FIFO allocation per bin, which seems
* reasonable.
*/
edata_list_active_prepend(&shard->freelist[pszind], edata);
shard->bytes_cur += size;
if (shard->bytes_cur > sec->bytes_max) {
/*
* We've exceeded the shard limit. We make two nods in the
* direction of fragmentation avoidance: we flush everything in
* the shard, rather than one particular bin, and we hold the
* lock while flushing (in case one of the extents we flush is
* highly preferred from a fragmentation-avoidance perspective
* in the backing allocator). This has the extra advantage of
* not requiring advanced cache balancing strategies.
*/
sec_do_flush_locked(tsdn, sec, shard);
}
}
static void
sec_dalloc(tsdn_t *tsdn, pai_t *self, edata_t *edata) {
sec_t *sec = (sec_t *)self;
if (sec->nshards == 0 || edata_size_get(edata) > sec->alloc_max) {
pai_dalloc(tsdn, sec->fallback, edata);
return;
}
sec_shard_t *shard = sec_shard_pick(tsdn, sec);
malloc_mutex_lock(tsdn, &shard->mtx);
if (shard->enabled) {
sec_shard_dalloc_locked(tsdn, sec, shard, edata);
malloc_mutex_unlock(tsdn, &shard->mtx);
} else {
malloc_mutex_unlock(tsdn, &shard->mtx);
pai_dalloc(tsdn, sec->fallback, edata);
}
}
void
sec_flush(tsdn_t *tsdn, sec_t *sec) {
for (size_t i = 0; i < sec->nshards; i++) {
malloc_mutex_lock(tsdn, &sec->shards[i].mtx);
sec_do_flush_locked(tsdn, sec, &sec->shards[i]);
malloc_mutex_unlock(tsdn, &sec->shards[i].mtx);
}
}
void
sec_disable(tsdn_t *tsdn, sec_t *sec) {
for (size_t i = 0; i < sec->nshards; i++) {
malloc_mutex_lock(tsdn, &sec->shards[i].mtx);
sec->shards[i].enabled = false;
sec_do_flush_locked(tsdn, sec, &sec->shards[i]);
malloc_mutex_unlock(tsdn, &sec->shards[i].mtx);
}
}
void
sec_stats_merge(tsdn_t *tsdn, sec_t *sec, sec_stats_t *stats) {
size_t sum = 0;
for (size_t i = 0; i < sec->nshards; i++) {
/*
* We could save these lock acquisitions by making bytes_cur
* atomic, but stats collection is rare anyways and we expect
* the number and type of stats to get more interesting.
*/
malloc_mutex_lock(tsdn, &sec->shards[i].mtx);
sum += sec->shards[i].bytes_cur;
malloc_mutex_unlock(tsdn, &sec->shards[i].mtx);
}
stats->bytes += sum;
}
void
sec_mutex_stats_read(tsdn_t *tsdn, sec_t *sec,
mutex_prof_data_t *mutex_prof_data) {
for (size_t i = 0; i < sec->nshards; i++) {
malloc_mutex_lock(tsdn, &sec->shards[i].mtx);
malloc_mutex_prof_accum(tsdn, mutex_prof_data,
&sec->shards[i].mtx);
malloc_mutex_unlock(tsdn, &sec->shards[i].mtx);
}
}
void
sec_prefork2(tsdn_t *tsdn, sec_t *sec) {
for (size_t i = 0; i < sec->nshards; i++) {
malloc_mutex_prefork(tsdn, &sec->shards[i].mtx);
}
}
void
sec_postfork_parent(tsdn_t *tsdn, sec_t *sec) {
for (size_t i = 0; i < sec->nshards; i++) {
malloc_mutex_postfork_parent(tsdn, &sec->shards[i].mtx);
}
}
void
sec_postfork_child(tsdn_t *tsdn, sec_t *sec) {
for (size_t i = 0; i < sec->nshards; i++) {
malloc_mutex_postfork_child(tsdn, &sec->shards[i].mtx);
}
}