Add element acquire/release capabilities to rtree.

This makes it possible to acquire short-term "ownership" of rtree
elements so that it is possible to read an extent pointer *and* read the
extent's contents with a guarantee that the element will not be modified
until the ownership is released.  This is intended as a mechanism for
resolving rtree read/write races rather than as a way to lock extents.
This commit is contained in:
Jason Evans
2016-03-28 03:06:35 -07:00
parent f4a58847d3
commit 2d2b4e98c9
6 changed files with 302 additions and 135 deletions

View File

@@ -87,7 +87,7 @@ JEMALLOC_INLINE extent_t *
chunk_lookup(const void *ptr, bool dependent)
{
return (rtree_get(&chunks_rtree, (uintptr_t)ptr, dependent));
return (rtree_read(&chunks_rtree, (uintptr_t)ptr, dependent));
}
#endif

View File

@@ -457,18 +457,24 @@ register_zone
rtree_child_read
rtree_child_read_hard
rtree_child_tryread
rtree_clear
rtree_delete
rtree_get
rtree_new
rtree_node_valid
rtree_set
rtree_elm_acquire
rtree_elm_lookup
rtree_elm_read
rtree_elm_read_acquired
rtree_elm_release
rtree_elm_write
rtree_elm_write_acquired
rtree_read
rtree_start_level
rtree_subkey
rtree_subtree_read
rtree_subtree_read_hard
rtree_subtree_tryread
rtree_val_read
rtree_val_write
rtree_write
run_quantize_ceil
run_quantize_floor
s2u

View File

@@ -6,7 +6,7 @@
*/
#ifdef JEMALLOC_H_TYPES
typedef struct rtree_node_elm_s rtree_node_elm_t;
typedef struct rtree_elm_s rtree_elm_t;
typedef struct rtree_level_s rtree_level_t;
typedef struct rtree_s rtree_t;
@@ -21,25 +21,24 @@ typedef struct rtree_s rtree_t;
((1U << (LG_SIZEOF_PTR+3)) / RTREE_BITS_PER_LEVEL)
/* Used for two-stage lock-free node initialization. */
#define RTREE_NODE_INITIALIZING ((rtree_node_elm_t *)0x1)
#define RTREE_NODE_INITIALIZING ((rtree_elm_t *)0x1)
/*
* The node allocation callback function's argument is the number of contiguous
* rtree_node_elm_t structures to allocate, and the resulting memory must be
* zeroed.
* rtree_elm_t structures to allocate, and the resulting memory must be zeroed.
*/
typedef rtree_node_elm_t *(rtree_node_alloc_t)(size_t);
typedef void (rtree_node_dalloc_t)(rtree_node_elm_t *);
typedef rtree_elm_t *(rtree_node_alloc_t)(size_t);
typedef void (rtree_node_dalloc_t)(rtree_elm_t *);
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct rtree_node_elm_s {
struct rtree_elm_s {
union {
void *pun;
rtree_node_elm_t *child;
extent_t *val;
void *pun;
rtree_elm_t *child;
extent_t *extent;
};
};
@@ -60,15 +59,15 @@ struct rtree_level_s {
*
* levels[1] : [<unused> | 0x00000001**** | 0x00000002**** | ... ]
*
* levels[2] : [val(0x000000000000) | val(0x000000000001) | ...]
* levels[2] : [extent(0x000000000000) | extent(0x000000000001) | ...]
*
* This has practical implications on x64, which currently uses only the
* lower 47 bits of virtual address space in userland, thus leaving
* subtrees[0] unused and avoiding a level of tree traversal.
*/
union {
void *subtree_pun;
rtree_node_elm_t *subtree;
void *subtree_pun;
rtree_elm_t *subtree;
};
/* Number of key bits distinguished by this level. */
unsigned bits;
@@ -98,10 +97,9 @@ struct rtree_s {
bool rtree_new(rtree_t *rtree, unsigned bits, rtree_node_alloc_t *alloc,
rtree_node_dalloc_t *dalloc);
void rtree_delete(rtree_t *rtree);
rtree_node_elm_t *rtree_subtree_read_hard(rtree_t *rtree,
rtree_elm_t *rtree_subtree_read_hard(rtree_t *rtree, unsigned level);
rtree_elm_t *rtree_child_read_hard(rtree_t *rtree, rtree_elm_t *elm,
unsigned level);
rtree_node_elm_t *rtree_child_read_hard(rtree_t *rtree,
rtree_node_elm_t *elm, unsigned level);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
@@ -111,22 +109,27 @@ rtree_node_elm_t *rtree_child_read_hard(rtree_t *rtree,
unsigned rtree_start_level(rtree_t *rtree, uintptr_t key);
uintptr_t rtree_subkey(rtree_t *rtree, uintptr_t key, unsigned level);
bool rtree_node_valid(rtree_node_elm_t *node);
rtree_node_elm_t *rtree_child_tryread(rtree_node_elm_t *elm,
bool dependent);
rtree_node_elm_t *rtree_child_read(rtree_t *rtree, rtree_node_elm_t *elm,
bool rtree_node_valid(rtree_elm_t *node);
rtree_elm_t *rtree_child_tryread(rtree_elm_t *elm, bool dependent);
rtree_elm_t *rtree_child_read(rtree_t *rtree, rtree_elm_t *elm,
unsigned level, bool dependent);
extent_t *rtree_val_read(rtree_t *rtree, rtree_node_elm_t *elm,
extent_t *rtree_elm_read(rtree_elm_t *elm, bool dependent);
void rtree_elm_write(rtree_elm_t *elm, const extent_t *extent);
rtree_elm_t *rtree_subtree_tryread(rtree_t *rtree, unsigned level,
bool dependent);
void rtree_val_write(rtree_t *rtree, rtree_node_elm_t *elm,
const extent_t *val);
rtree_node_elm_t *rtree_subtree_tryread(rtree_t *rtree, unsigned level,
bool dependent);
rtree_node_elm_t *rtree_subtree_read(rtree_t *rtree, unsigned level,
rtree_elm_t *rtree_subtree_read(rtree_t *rtree, unsigned level,
bool dependent);
rtree_elm_t *rtree_elm_lookup(rtree_t *rtree, uintptr_t key,
bool dependent, bool init_missing);
extent_t *rtree_get(rtree_t *rtree, uintptr_t key, bool dependent);
bool rtree_set(rtree_t *rtree, uintptr_t key, const extent_t *val);
bool rtree_write(rtree_t *rtree, uintptr_t key, const extent_t *extent);
extent_t *rtree_read(rtree_t *rtree, uintptr_t key, bool dependent);
rtree_elm_t *rtree_elm_acquire(rtree_t *rtree, uintptr_t key,
bool dependent, bool init_missing);
extent_t *rtree_elm_read_acquired(rtree_elm_t *elm);
void rtree_elm_write_acquired(rtree_elm_t *elm, const extent_t *extent);
void rtree_elm_release(rtree_elm_t *elm);
void rtree_clear(rtree_t *rtree, uintptr_t key);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_RTREE_C_))
@@ -154,18 +157,18 @@ rtree_subkey(rtree_t *rtree, uintptr_t key, unsigned level)
}
JEMALLOC_ALWAYS_INLINE bool
rtree_node_valid(rtree_node_elm_t *node)
rtree_node_valid(rtree_elm_t *node)
{
return ((uintptr_t)node > (uintptr_t)RTREE_NODE_INITIALIZING);
}
JEMALLOC_ALWAYS_INLINE rtree_node_elm_t *
rtree_child_tryread(rtree_node_elm_t *elm, bool dependent)
JEMALLOC_ALWAYS_INLINE rtree_elm_t *
rtree_child_tryread(rtree_elm_t *elm, bool dependent)
{
rtree_node_elm_t *child;
rtree_elm_t *child;
/* Double-checked read (first read may be stale. */
/* Double-checked read (first read may be stale). */
child = elm->child;
if (!dependent && !rtree_node_valid(child))
child = atomic_read_p(&elm->pun);
@@ -173,11 +176,11 @@ rtree_child_tryread(rtree_node_elm_t *elm, bool dependent)
return (child);
}
JEMALLOC_ALWAYS_INLINE rtree_node_elm_t *
rtree_child_read(rtree_t *rtree, rtree_node_elm_t *elm, unsigned level,
JEMALLOC_ALWAYS_INLINE rtree_elm_t *
rtree_child_read(rtree_t *rtree, rtree_elm_t *elm, unsigned level,
bool dependent)
{
rtree_node_elm_t *child;
rtree_elm_t *child;
child = rtree_child_tryread(elm, dependent);
if (!dependent && unlikely(!rtree_node_valid(child)))
@@ -187,40 +190,46 @@ rtree_child_read(rtree_t *rtree, rtree_node_elm_t *elm, unsigned level,
}
JEMALLOC_ALWAYS_INLINE extent_t *
rtree_val_read(rtree_t *rtree, rtree_node_elm_t *elm, bool dependent)
rtree_elm_read(rtree_elm_t *elm, bool dependent)
{
extent_t *extent;
if (dependent) {
/*
* Reading a val on behalf of a pointer to a valid allocation is
* guaranteed to be a clean read even without synchronization,
* because the rtree update became visible in memory before the
* pointer came into existence.
* Reading a value on behalf of a pointer to a valid allocation
* is guaranteed to be a clean read even without
* synchronization, because the rtree update became visible in
* memory before the pointer came into existence.
*/
return (elm->val);
extent = elm->extent;
} else {
/*
* An arbitrary read, e.g. on behalf of ivsalloc(), may not be
* dependent on a previous rtree write, which means a stale read
* could result if synchronization were omitted here.
*/
return (atomic_read_p(&elm->pun));
extent = (extent_t *)atomic_read_p(&elm->pun);
}
/* Mask the lock bit. */
extent = (extent_t *)((uintptr_t)extent & ~((uintptr_t)0x1));
return (extent);
}
JEMALLOC_INLINE void
rtree_val_write(rtree_t *rtree, rtree_node_elm_t *elm, const extent_t *val)
rtree_elm_write(rtree_elm_t *elm, const extent_t *extent)
{
atomic_write_p(&elm->pun, val);
atomic_write_p(&elm->pun, extent);
}
JEMALLOC_ALWAYS_INLINE rtree_node_elm_t *
JEMALLOC_ALWAYS_INLINE rtree_elm_t *
rtree_subtree_tryread(rtree_t *rtree, unsigned level, bool dependent)
{
rtree_node_elm_t *subtree;
rtree_elm_t *subtree;
/* Double-checked read (first read may be stale. */
/* Double-checked read (first read may be stale). */
subtree = rtree->levels[level].subtree;
if (!dependent && unlikely(!rtree_node_valid(subtree)))
subtree = atomic_read_p(&rtree->levels[level].subtree_pun);
@@ -228,10 +237,10 @@ rtree_subtree_tryread(rtree_t *rtree, unsigned level, bool dependent)
return (subtree);
}
JEMALLOC_ALWAYS_INLINE rtree_node_elm_t *
JEMALLOC_ALWAYS_INLINE rtree_elm_t *
rtree_subtree_read(rtree_t *rtree, unsigned level, bool dependent)
{
rtree_node_elm_t *subtree;
rtree_elm_t *subtree;
subtree = rtree_subtree_tryread(rtree, level, dependent);
if (!dependent && unlikely(!rtree_node_valid(subtree)))
@@ -240,16 +249,20 @@ rtree_subtree_read(rtree_t *rtree, unsigned level, bool dependent)
return (subtree);
}
JEMALLOC_ALWAYS_INLINE extent_t *
rtree_get(rtree_t *rtree, uintptr_t key, bool dependent)
JEMALLOC_ALWAYS_INLINE rtree_elm_t *
rtree_elm_lookup(rtree_t *rtree, uintptr_t key, bool dependent,
bool init_missing)
{
uintptr_t subkey;
unsigned start_level;
rtree_node_elm_t *node;
rtree_elm_t *node;
assert(!dependent || !init_missing);
start_level = rtree_start_level(rtree, key);
node = rtree_subtree_tryread(rtree, start_level, dependent);
node = init_missing ? rtree_subtree_read(rtree, start_level, dependent)
: rtree_subtree_tryread(rtree, start_level, dependent);
#define RTREE_GET_BIAS (RTREE_HEIGHT_MAX - rtree->height)
switch (start_level + RTREE_GET_BIAS) {
#define RTREE_GET_SUBTREE(level) \
@@ -259,7 +272,9 @@ rtree_get(rtree_t *rtree, uintptr_t key, bool dependent)
return (NULL); \
subkey = rtree_subkey(rtree, key, level - \
RTREE_GET_BIAS); \
node = rtree_child_tryread(&node[subkey], dependent); \
node = init_missing ? rtree_child_read(rtree, \
&node[subkey], level - RTREE_GET_BIAS, dependent) : \
rtree_child_tryread(&node[subkey], dependent); \
/* Fall through. */
#define RTREE_GET_LEAF(level) \
case level: \
@@ -272,8 +287,7 @@ rtree_get(rtree_t *rtree, uintptr_t key, bool dependent)
* node is a leaf, so it contains values rather than \
* child pointers. \
*/ \
return (rtree_val_read(rtree, &node[subkey], \
dependent));
return (&node[subkey]);
#if RTREE_HEIGHT_MAX > 1
RTREE_GET_SUBTREE(0)
#endif
@@ -332,33 +346,94 @@ rtree_get(rtree_t *rtree, uintptr_t key, bool dependent)
}
JEMALLOC_INLINE bool
rtree_set(rtree_t *rtree, uintptr_t key, const extent_t *val)
rtree_write(rtree_t *rtree, uintptr_t key, const extent_t *extent)
{
uintptr_t subkey;
unsigned i, start_level;
rtree_node_elm_t *node, *child;
rtree_elm_t *elm;
start_level = rtree_start_level(rtree, key);
assert(extent != NULL); /* Use rtree_clear() for this case. */
assert(((uintptr_t)extent & (uintptr_t)0x1) == (uintptr_t)0x0);
node = rtree_subtree_read(rtree, start_level, false);
if (node == NULL)
elm = rtree_elm_lookup(rtree, key, false, true);
if (elm == NULL)
return (true);
for (i = start_level; /**/; i++, node = child) {
subkey = rtree_subkey(rtree, key, i);
if (i == rtree->height - 1) {
/*
* node is a leaf, so it contains values rather than
* child pointers.
*/
rtree_val_write(rtree, &node[subkey], val);
return (false);
}
assert(i + 1 < rtree->height);
child = rtree_child_read(rtree, &node[subkey], i, false);
if (child == NULL)
return (true);
assert(rtree_elm_read(elm, false) == NULL);
rtree_elm_write(elm, extent);
return (false);
}
JEMALLOC_ALWAYS_INLINE extent_t *
rtree_read(rtree_t *rtree, uintptr_t key, bool dependent)
{
rtree_elm_t *elm;
elm = rtree_elm_lookup(rtree, key, dependent, false);
if (elm == NULL)
return (NULL);
return (rtree_elm_read(elm, dependent));
}
JEMALLOC_INLINE rtree_elm_t *
rtree_elm_acquire(rtree_t *rtree, uintptr_t key, bool dependent,
bool init_missing)
{
rtree_elm_t *elm;
elm = rtree_elm_lookup(rtree, key, dependent, init_missing);
if (!dependent && elm == NULL)
return (NULL);
{
extent_t *extent;
void *s;
do {
extent = rtree_elm_read(elm, false);
/* The least significant bit serves as a lock. */
s = (void *)((uintptr_t)extent | (uintptr_t)0x1);
} while (atomic_cas_p(&elm->pun, (void *)extent, s));
}
not_reached();
return (elm);
}
JEMALLOC_INLINE extent_t *
rtree_elm_read_acquired(rtree_elm_t *elm)
{
extent_t *extent;
assert(((uintptr_t)elm->pun & (uintptr_t)0x1) == (uintptr_t)0x1);
extent = (extent_t *)((uintptr_t)elm->pun & ~((uintptr_t)0x1));
assert(((uintptr_t)extent & (uintptr_t)0x1) == (uintptr_t)0x0);
return (extent);
}
JEMALLOC_INLINE void
rtree_elm_write_acquired(rtree_elm_t *elm, const extent_t *extent)
{
assert(((uintptr_t)extent & (uintptr_t)0x1) == (uintptr_t)0x0);
assert(((uintptr_t)elm->pun & (uintptr_t)0x1) == (uintptr_t)0x1);
elm->pun = (void *)((uintptr_t)extent | (uintptr_t)0x1);
assert(rtree_elm_read_acquired(elm) == extent);
}
JEMALLOC_INLINE void
rtree_elm_release(rtree_elm_t *elm)
{
rtree_elm_write(elm, rtree_elm_read_acquired(elm));
}
JEMALLOC_INLINE void
rtree_clear(rtree_t *rtree, uintptr_t key)
{
rtree_elm_t *elm;
elm = rtree_elm_acquire(rtree, key, true, false);
rtree_elm_write_acquired(elm, NULL);
rtree_elm_release(elm);
}
#endif