|
|
|
@@ -13,7 +13,6 @@
|
|
|
|
|
* of the tcache at all.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* The count of the number of cached allocations in a bin. We make this signed
|
|
|
|
|
* so that negative numbers can encode "invalid" states (e.g. a low water mark
|
|
|
|
@@ -39,29 +38,67 @@ struct cache_bin_info_s {
|
|
|
|
|
/* Upper limit on ncached. */
|
|
|
|
|
cache_bin_sz_t ncached_max;
|
|
|
|
|
};
|
|
|
|
|
extern cache_bin_info_t *tcache_bin_info;
|
|
|
|
|
|
|
|
|
|
typedef struct cache_bin_s cache_bin_t;
|
|
|
|
|
struct cache_bin_s {
|
|
|
|
|
/* Min # cached since last GC. */
|
|
|
|
|
cache_bin_sz_t low_water;
|
|
|
|
|
/* # of cached objects. */
|
|
|
|
|
cache_bin_sz_t ncached;
|
|
|
|
|
/*
|
|
|
|
|
* ncached and stats are both modified frequently. Let's keep them
|
|
|
|
|
* The cache bin stack is represented using 3 pointers: cur_ptr,
|
|
|
|
|
* low_water and full, optimized for the fast path efficiency.
|
|
|
|
|
*
|
|
|
|
|
* low addr ==> high addr
|
|
|
|
|
* |----|----|----|item1|item2|.....................|itemN|
|
|
|
|
|
* full cur empty
|
|
|
|
|
* (ncached == N; full + ncached_max == empty)
|
|
|
|
|
*
|
|
|
|
|
* Data directly stored:
|
|
|
|
|
* 1) cur_ptr points to the current item to be allocated, i.e. *cur_ptr.
|
|
|
|
|
* 2) full points to the top of the stack (i.e. ncached == ncached_max),
|
|
|
|
|
* which is compared against on free_fastpath to check "is_full".
|
|
|
|
|
* 3) low_water indicates a low water mark of ncached.
|
|
|
|
|
* Range of low_water is [cur, empty + 1], i.e. values of [ncached, -1].
|
|
|
|
|
*
|
|
|
|
|
* The empty position (ncached == 0) is derived via full + ncached_max
|
|
|
|
|
* and not accessed in the common case (guarded behind low_water).
|
|
|
|
|
*
|
|
|
|
|
* On 64-bit, 2 of the 3 pointers (full and low water) are compressed by
|
|
|
|
|
* omitting the high 32 bits. Overflow of the half pointers is avoided
|
|
|
|
|
* when allocating / initializing the stack space. As a result,
|
|
|
|
|
* cur_ptr.lowbits can be safely used for pointer comparisons.
|
|
|
|
|
*/
|
|
|
|
|
union {
|
|
|
|
|
void **ptr;
|
|
|
|
|
struct {
|
|
|
|
|
/* highbits never accessed directly. */
|
|
|
|
|
#if (LG_SIZEOF_PTR == 3 && defined(JEMALLOC_BIG_ENDIAN))
|
|
|
|
|
uint32_t __highbits;
|
|
|
|
|
#endif
|
|
|
|
|
uint32_t lowbits;
|
|
|
|
|
#if (LG_SIZEOF_PTR == 3 && !defined(JEMALLOC_BIG_ENDIAN))
|
|
|
|
|
uint32_t __highbits;
|
|
|
|
|
#endif
|
|
|
|
|
};
|
|
|
|
|
} cur_ptr;
|
|
|
|
|
/*
|
|
|
|
|
* cur_ptr and stats are both modified frequently. Let's keep them
|
|
|
|
|
* close so that they have a higher chance of being on the same
|
|
|
|
|
* cacheline, thus less write-backs.
|
|
|
|
|
*/
|
|
|
|
|
cache_bin_stats_t tstats;
|
|
|
|
|
/*
|
|
|
|
|
* Stack of available objects.
|
|
|
|
|
* Points to the first item that hasn't been used since last GC, to
|
|
|
|
|
* track the low water mark (min # of cached). It may point to
|
|
|
|
|
* empty_position + 1, which indicates the cache has been depleted and
|
|
|
|
|
* refilled (low_water == -1).
|
|
|
|
|
*/
|
|
|
|
|
uint32_t low_water_position;
|
|
|
|
|
/*
|
|
|
|
|
* Points to the position when the cache is full.
|
|
|
|
|
*
|
|
|
|
|
* To make use of adjacent cacheline prefetch, the items in the avail
|
|
|
|
|
* stack goes to higher address for newer allocations. avail points
|
|
|
|
|
* just above the available space, which means that
|
|
|
|
|
* avail[-ncached, ... -1] are available items and the lowest item will
|
|
|
|
|
* be allocated first.
|
|
|
|
|
* stack goes to higher address for newer allocations (i.e. cur_ptr++).
|
|
|
|
|
*/
|
|
|
|
|
void **avail;
|
|
|
|
|
uint32_t full_position;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
typedef struct cache_bin_array_descriptor_s cache_bin_array_descriptor_t;
|
|
|
|
@@ -76,6 +113,67 @@ struct cache_bin_array_descriptor_s {
|
|
|
|
|
cache_bin_t *bins_large;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* None of the cache_bin_*_get / _set functions is used on the fast path, which
|
|
|
|
|
* relies on pointer comparisons to determine if the cache is full / empty.
|
|
|
|
|
*/
|
|
|
|
|
static inline cache_bin_sz_t
|
|
|
|
|
cache_bin_ncached_get(cache_bin_t *bin, szind_t ind) {
|
|
|
|
|
cache_bin_sz_t n = tcache_bin_info[ind].ncached_max -
|
|
|
|
|
(bin->cur_ptr.lowbits - bin->full_position) / sizeof(void *);
|
|
|
|
|
assert(n >= 0 && n <= tcache_bin_info[ind].ncached_max);
|
|
|
|
|
assert(n == 0 || *(bin->cur_ptr.ptr) != NULL);
|
|
|
|
|
|
|
|
|
|
return n;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline void **
|
|
|
|
|
cache_bin_empty_position_get(cache_bin_t *bin, szind_t ind) {
|
|
|
|
|
void **ret = bin->cur_ptr.ptr + cache_bin_ncached_get(bin, ind);
|
|
|
|
|
/* Low bits overflow disallowed when allocating the space. */
|
|
|
|
|
assert((uint32_t)(uintptr_t)ret >= bin->cur_ptr.lowbits);
|
|
|
|
|
assert(bin->full_position + tcache_bin_info[ind].ncached_max *
|
|
|
|
|
sizeof(void *) > bin->full_position);
|
|
|
|
|
|
|
|
|
|
/* Can also be computed via (full_position + ncached_max) | highbits. */
|
|
|
|
|
assert(ret == (void **)((uintptr_t)(bin->full_position +
|
|
|
|
|
tcache_bin_info[ind].ncached_max * sizeof(void *)) |
|
|
|
|
|
(uintptr_t)((uintptr_t)bin->cur_ptr.ptr &
|
|
|
|
|
~(((uint64_t)1 << 32) - 1))));
|
|
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Returns the position of the bottom item on the stack; for convenience. */
|
|
|
|
|
static inline void **
|
|
|
|
|
cache_bin_bottom_item_get(cache_bin_t *bin, szind_t ind) {
|
|
|
|
|
void **bottom = cache_bin_empty_position_get(bin, ind) - 1;
|
|
|
|
|
assert(cache_bin_ncached_get(bin, ind) == 0 || *bottom != NULL);
|
|
|
|
|
|
|
|
|
|
return bottom;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Returns the numeric value of low water in [-1, ncached]. */
|
|
|
|
|
static inline cache_bin_sz_t
|
|
|
|
|
cache_bin_low_water_get(cache_bin_t *bin, szind_t ind) {
|
|
|
|
|
cache_bin_sz_t low_water = tcache_bin_info[ind].ncached_max -
|
|
|
|
|
(bin->low_water_position - bin->full_position) / sizeof(void *);
|
|
|
|
|
assert(low_water >= -1 && low_water <=
|
|
|
|
|
tcache_bin_info[ind].ncached_max);
|
|
|
|
|
assert(low_water <= cache_bin_ncached_get(bin, ind));
|
|
|
|
|
assert(bin->low_water_position >= bin->cur_ptr.lowbits);
|
|
|
|
|
|
|
|
|
|
return low_water;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
|
cache_bin_ncached_set(cache_bin_t *bin, szind_t ind, cache_bin_sz_t n) {
|
|
|
|
|
bin->cur_ptr.lowbits = bin->full_position +
|
|
|
|
|
(tcache_bin_info[ind].ncached_max - n) * sizeof(void *);
|
|
|
|
|
assert(n >= 0 && n <= tcache_bin_info[ind].ncached_max);
|
|
|
|
|
assert(n == 0 || *bin->cur_ptr.ptr != NULL);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
|
cache_bin_array_descriptor_init(cache_bin_array_descriptor_t *descriptor,
|
|
|
|
|
cache_bin_t *bins_small, cache_bin_t *bins_large) {
|
|
|
|
@@ -85,19 +183,24 @@ cache_bin_array_descriptor_init(cache_bin_array_descriptor_t *descriptor,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
JEMALLOC_ALWAYS_INLINE void *
|
|
|
|
|
cache_bin_alloc_easy(cache_bin_t *bin, bool *success) {
|
|
|
|
|
void *ret;
|
|
|
|
|
|
|
|
|
|
bin->ncached--;
|
|
|
|
|
|
|
|
|
|
cache_bin_alloc_easy(cache_bin_t *bin, bool *success, cache_bin_sz_t ind) {
|
|
|
|
|
/*
|
|
|
|
|
* Check for both bin->ncached == 0 and ncached < low_water
|
|
|
|
|
* in a single branch.
|
|
|
|
|
* This may read from the empty position; however the loaded value won't
|
|
|
|
|
* be used. It's safe because the stack has one more slot reserved.
|
|
|
|
|
*/
|
|
|
|
|
if (unlikely(bin->ncached <= bin->low_water)) {
|
|
|
|
|
bin->low_water = bin->ncached;
|
|
|
|
|
if (bin->ncached == -1) {
|
|
|
|
|
bin->ncached = 0;
|
|
|
|
|
void *ret = *(bin->cur_ptr.ptr++);
|
|
|
|
|
/*
|
|
|
|
|
* Check for both bin->ncached == 0 and ncached < low_water in a single
|
|
|
|
|
* branch. This also avoids accessing tcache_bin_info (which is on a
|
|
|
|
|
* separate cacheline / page) in the common case.
|
|
|
|
|
*/
|
|
|
|
|
if (unlikely(bin->cur_ptr.lowbits >= bin->low_water_position)) {
|
|
|
|
|
bin->low_water_position = bin->cur_ptr.lowbits;
|
|
|
|
|
uint32_t empty_position = bin->full_position +
|
|
|
|
|
tcache_bin_info[ind].ncached_max * sizeof(void *);
|
|
|
|
|
if (bin->cur_ptr.lowbits > empty_position) {
|
|
|
|
|
bin->cur_ptr.ptr--;
|
|
|
|
|
assert(bin->cur_ptr.lowbits == empty_position);
|
|
|
|
|
*success = false;
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
@@ -111,19 +214,18 @@ cache_bin_alloc_easy(cache_bin_t *bin, bool *success) {
|
|
|
|
|
* cacheline).
|
|
|
|
|
*/
|
|
|
|
|
*success = true;
|
|
|
|
|
ret = *(bin->avail - (bin->ncached + 1));
|
|
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
JEMALLOC_ALWAYS_INLINE bool
|
|
|
|
|
cache_bin_dalloc_easy(cache_bin_t *bin, cache_bin_info_t *bin_info, void *ptr) {
|
|
|
|
|
if (unlikely(bin->ncached == bin_info->ncached_max)) {
|
|
|
|
|
cache_bin_dalloc_easy(cache_bin_t *bin, void *ptr) {
|
|
|
|
|
if (unlikely(bin->cur_ptr.lowbits == bin->full_position)) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
assert(bin->ncached < bin_info->ncached_max);
|
|
|
|
|
bin->ncached++;
|
|
|
|
|
*(bin->avail - bin->ncached) = ptr;
|
|
|
|
|
|
|
|
|
|
*(--bin->cur_ptr.ptr) = ptr;
|
|
|
|
|
assert(bin->cur_ptr.lowbits >= bin->full_position);
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|