SEC: Reduce lock hold times.

Only flush a subset of extents during flushing, and drop the lock while doing
so.
This commit is contained in:
David Goldblatt 2021-01-05 15:52:25 -08:00 committed by David Goldblatt
parent 1944ebbe7f
commit bf448d7a5a
3 changed files with 110 additions and 24 deletions

View File

@ -8,13 +8,9 @@
* Small extent cache. * Small extent cache.
* *
* This includes some utilities to cache small extents. We have a per-pszind * This includes some utilities to cache small extents. We have a per-pszind
* bin with its own lock and edata heap (including only extents of that size). * bin with its own list of extents of that size. We don't try to do any
* We don't try to do any coalescing of extents (since it would require * coalescing of extents (since it would in general require cross-shard locks or
* cross-bin locks). As a result, we need to be careful about fragmentation. * knowledge of the underlying PAI implementation).
* As a gesture in that direction, we limit the size of caches, apply first-fit
* within the bins, and, when flushing a bin, flush all of its extents rather
* than just those up to some threshold. When we allocate again, we'll get a
* chance to move to better ones.
*/ */
/* /*
@ -46,6 +42,19 @@ sec_stats_accum(sec_stats_t *dst, sec_stats_t *src) {
dst->bytes += src->bytes; dst->bytes += src->bytes;
} }
/* A collections of free extents, all of the same size. */
typedef struct sec_bin_s sec_bin_t;
struct sec_bin_s {
/*
* Number of bytes in this particular bin (as opposed to the
* sec_shard_t's bytes_cur. This isn't user visible or reported in
* stats; rather, it allows us to quickly determine the change in the
* centralized counter when flushing.
*/
size_t bytes_cur;
edata_list_active_t freelist;
};
typedef struct sec_shard_s sec_shard_t; typedef struct sec_shard_s sec_shard_t;
struct sec_shard_s { struct sec_shard_s {
/* /*
@ -64,8 +73,11 @@ struct sec_shard_s {
* hooks are installed. * hooks are installed.
*/ */
bool enabled; bool enabled;
edata_list_active_t freelist[SEC_NPSIZES]; sec_bin_t bins[SEC_NPSIZES];
/* Number of bytes in all bins in the shard. */
size_t bytes_cur; size_t bytes_cur;
/* The next pszind to flush in the flush-some pathways. */
pszind_t to_flush_next;
}; };
typedef struct sec_s sec_t; typedef struct sec_s sec_t;
@ -83,6 +95,18 @@ struct sec_s {
* the bins in that shard to be flushed. * the bins in that shard to be flushed.
*/ */
size_t bytes_max; size_t bytes_max;
/*
* The number of bytes (in all bins) we flush down to when we exceed
* bytes_cur. We want this to be less than bytes_cur, because
* otherwise we could get into situations where a shard undergoing
* net-deallocation keeps bytes_cur very near to bytes_max, so that
* most deallocations get immediately forwarded to the underlying PAI
* implementation, defeating the point of the SEC.
*
* Currently this is just set to bytes_max / 2, but eventually can be
* configurable.
*/
size_t bytes_after_flush;
/* /*
* We don't necessarily always use all the shards; requests are * We don't necessarily always use all the shards; requests are

View File

@ -11,7 +11,14 @@ static bool sec_shrink(tsdn_t *tsdn, pai_t *self, edata_t *edata,
size_t old_size, size_t new_size); size_t old_size, size_t new_size);
static void sec_dalloc(tsdn_t *tsdn, pai_t *self, edata_t *edata); static void sec_dalloc(tsdn_t *tsdn, pai_t *self, edata_t *edata);
bool sec_init(sec_t *sec, pai_t *fallback, size_t nshards, size_t alloc_max, static void
sec_bin_init(sec_bin_t *bin) {
bin->bytes_cur = 0;
edata_list_active_init(&bin->freelist);
}
bool
sec_init(sec_t *sec, pai_t *fallback, size_t nshards, size_t alloc_max,
size_t bytes_max) { size_t bytes_max) {
if (nshards > SEC_NSHARDS_MAX) { if (nshards > SEC_NSHARDS_MAX) {
nshards = SEC_NSHARDS_MAX; nshards = SEC_NSHARDS_MAX;
@ -25,9 +32,10 @@ bool sec_init(sec_t *sec, pai_t *fallback, size_t nshards, size_t alloc_max,
} }
shard->enabled = true; shard->enabled = true;
for (pszind_t j = 0; j < SEC_NPSIZES; j++) { for (pszind_t j = 0; j < SEC_NPSIZES; j++) {
edata_list_active_init(&shard->freelist[j]); sec_bin_init(&shard->bins[j]);
} }
shard->bytes_cur = 0; shard->bytes_cur = 0;
shard->to_flush_next = 0;
} }
sec->fallback = fallback; sec->fallback = fallback;
sec->alloc_max = alloc_max; sec->alloc_max = alloc_max;
@ -36,6 +44,7 @@ bool sec_init(sec_t *sec, pai_t *fallback, size_t nshards, size_t alloc_max,
} }
sec->bytes_max = bytes_max; sec->bytes_max = bytes_max;
sec->bytes_after_flush = bytes_max / 2;
sec->nshards = nshards; sec->nshards = nshards;
/* /*
@ -85,9 +94,12 @@ sec_shard_alloc_locked(tsdn_t *tsdn, sec_t *sec, sec_shard_t *shard,
if (!shard->enabled) { if (!shard->enabled) {
return NULL; return NULL;
} }
edata_t *edata = edata_list_active_first(&shard->freelist[pszind]); sec_bin_t *bin = &shard->bins[pszind];
edata_t *edata = edata_list_active_first(&bin->freelist);
if (edata != NULL) { if (edata != NULL) {
edata_list_active_remove(&shard->freelist[pszind], edata); edata_list_active_remove(&bin->freelist, edata);
assert(edata_size_get(edata) <= bin->bytes_cur);
bin->bytes_cur -= edata_size_get(edata);
assert(edata_size_get(edata) <= shard->bytes_cur); assert(edata_size_get(edata) <= shard->bytes_cur);
shard->bytes_cur -= edata_size_get(edata); shard->bytes_cur -= edata_size_get(edata);
} }
@ -135,30 +147,75 @@ sec_shrink(tsdn_t *tsdn, pai_t *self, edata_t *edata, size_t old_size,
} }
static void static void
sec_do_flush_locked(tsdn_t *tsdn, sec_t *sec, sec_shard_t *shard) { sec_flush_all_locked(tsdn_t *tsdn, sec_t *sec, sec_shard_t *shard) {
malloc_mutex_assert_owner(tsdn, &shard->mtx); malloc_mutex_assert_owner(tsdn, &shard->mtx);
shard->bytes_cur = 0; shard->bytes_cur = 0;
edata_list_active_t to_flush; edata_list_active_t to_flush;
edata_list_active_init(&to_flush); edata_list_active_init(&to_flush);
for (pszind_t i = 0; i < SEC_NPSIZES; i++) { for (pszind_t i = 0; i < SEC_NPSIZES; i++) {
edata_list_active_concat(&to_flush, &shard->freelist[i]); sec_bin_t *bin = &shard->bins[i];
bin->bytes_cur = 0;
edata_list_active_concat(&to_flush, &bin->freelist);
} }
/*
* Ordinarily we would try to avoid doing the batch deallocation while
* holding the shard mutex, but the flush_all pathways only happen when
* we're disabling the HPA or resetting the arena, both of which are
* rare pathways.
*/
pai_dalloc_batch(tsdn, sec->fallback, &to_flush); pai_dalloc_batch(tsdn, sec->fallback, &to_flush);
} }
static void static void
sec_shard_dalloc_locked(tsdn_t *tsdn, sec_t *sec, sec_shard_t *shard, sec_flush_some_and_unlock(tsdn_t *tsdn, sec_t *sec, sec_shard_t *shard) {
malloc_mutex_assert_owner(tsdn, &shard->mtx);
edata_list_active_t to_flush;
edata_list_active_init(&to_flush);
while (shard->bytes_cur > sec->bytes_after_flush) {
/* Pick a victim. */
sec_bin_t *bin = &shard->bins[shard->to_flush_next];
/* Update our victim-picking state. */
shard->to_flush_next++;
if (shard->to_flush_next == SEC_NPSIZES) {
shard->to_flush_next = 0;
}
assert(shard->bytes_cur >= bin->bytes_cur);
if (bin->bytes_cur != 0) {
shard->bytes_cur -= bin->bytes_cur;
bin->bytes_cur = 0;
edata_list_active_concat(&to_flush, &bin->freelist);
}
/*
* Either bin->bytes_cur was 0, in which case we didn't touch
* the bin list but it should be empty anyways (or else we
* missed a bytes_cur update on a list modification), or it
* *was* 0 and we emptied it ourselves. Either way, it should
* be empty now.
*/
assert(edata_list_active_empty(&bin->freelist));
}
malloc_mutex_unlock(tsdn, &shard->mtx);
pai_dalloc_batch(tsdn, sec->fallback, &to_flush);
}
static void
sec_shard_dalloc_and_unlock(tsdn_t *tsdn, sec_t *sec, sec_shard_t *shard,
edata_t *edata) { edata_t *edata) {
malloc_mutex_assert_owner(tsdn, &shard->mtx); malloc_mutex_assert_owner(tsdn, &shard->mtx);
assert(shard->bytes_cur <= sec->bytes_max); assert(shard->bytes_cur <= sec->bytes_max);
size_t size = edata_size_get(edata); size_t size = edata_size_get(edata);
pszind_t pszind = sz_psz2ind(size); pszind_t pszind = sz_psz2ind(size);
/* /*
* Prepending here results in FIFO allocation per bin, which seems * Prepending here results in LIFO allocation per bin, which seems
* reasonable. * reasonable.
*/ */
edata_list_active_prepend(&shard->freelist[pszind], edata); sec_bin_t *bin = &shard->bins[pszind];
edata_list_active_prepend(&bin->freelist, edata);
bin->bytes_cur += size;
shard->bytes_cur += size; shard->bytes_cur += size;
if (shard->bytes_cur > sec->bytes_max) { if (shard->bytes_cur > sec->bytes_max) {
/* /*
@ -170,7 +227,10 @@ sec_shard_dalloc_locked(tsdn_t *tsdn, sec_t *sec, sec_shard_t *shard,
* in the backing allocator). This has the extra advantage of * in the backing allocator). This has the extra advantage of
* not requiring advanced cache balancing strategies. * not requiring advanced cache balancing strategies.
*/ */
sec_do_flush_locked(tsdn, sec, shard); sec_flush_some_and_unlock(tsdn, sec, shard);
malloc_mutex_assert_not_owner(tsdn, &shard->mtx);
} else {
malloc_mutex_unlock(tsdn, &shard->mtx);
} }
} }
@ -184,8 +244,7 @@ sec_dalloc(tsdn_t *tsdn, pai_t *self, edata_t *edata) {
sec_shard_t *shard = sec_shard_pick(tsdn, sec); sec_shard_t *shard = sec_shard_pick(tsdn, sec);
malloc_mutex_lock(tsdn, &shard->mtx); malloc_mutex_lock(tsdn, &shard->mtx);
if (shard->enabled) { if (shard->enabled) {
sec_shard_dalloc_locked(tsdn, sec, shard, edata); sec_shard_dalloc_and_unlock(tsdn, sec, shard, edata);
malloc_mutex_unlock(tsdn, &shard->mtx);
} else { } else {
malloc_mutex_unlock(tsdn, &shard->mtx); malloc_mutex_unlock(tsdn, &shard->mtx);
pai_dalloc(tsdn, sec->fallback, edata); pai_dalloc(tsdn, sec->fallback, edata);
@ -196,7 +255,7 @@ void
sec_flush(tsdn_t *tsdn, sec_t *sec) { sec_flush(tsdn_t *tsdn, sec_t *sec) {
for (size_t i = 0; i < sec->nshards; i++) { for (size_t i = 0; i < sec->nshards; i++) {
malloc_mutex_lock(tsdn, &sec->shards[i].mtx); malloc_mutex_lock(tsdn, &sec->shards[i].mtx);
sec_do_flush_locked(tsdn, sec, &sec->shards[i]); sec_flush_all_locked(tsdn, sec, &sec->shards[i]);
malloc_mutex_unlock(tsdn, &sec->shards[i].mtx); malloc_mutex_unlock(tsdn, &sec->shards[i].mtx);
} }
} }
@ -206,7 +265,7 @@ sec_disable(tsdn_t *tsdn, sec_t *sec) {
for (size_t i = 0; i < sec->nshards; i++) { for (size_t i = 0; i < sec->nshards; i++) {
malloc_mutex_lock(tsdn, &sec->shards[i].mtx); malloc_mutex_lock(tsdn, &sec->shards[i].mtx);
sec->shards[i].enabled = false; sec->shards[i].enabled = false;
sec_do_flush_locked(tsdn, sec, &sec->shards[i]); sec_flush_all_locked(tsdn, sec, &sec->shards[i]);
malloc_mutex_unlock(tsdn, &sec->shards[i].mtx); malloc_mutex_unlock(tsdn, &sec->shards[i].mtx);
} }
} }

View File

@ -200,8 +200,11 @@ TEST_BEGIN(test_auto_flush) {
expect_zu_eq(0, ta.dalloc_count, expect_zu_eq(0, ta.dalloc_count,
"Incorrect number of allocations"); "Incorrect number of allocations");
/* /*
* Free the extra allocation; this should trigger a flush of all * Free the extra allocation; this should trigger a flush. The internal
* extents in the cache. * flushing logic is allowed to get complicated; for now, we rely on our
* whitebox knowledge of the fact that the SEC flushes bins in their
* entirety when it decides to do so, and it has only one bin active
* right now.
*/ */
pai_dalloc(tsdn, &sec.pai, extra_alloc); pai_dalloc(tsdn, &sec.pai, extra_alloc);
expect_zu_eq(NALLOCS + 1, ta.alloc_count, expect_zu_eq(NALLOCS + 1, ta.alloc_count,