Introduce a backport of C11 atomics

This introduces a backport of C11 atomics.  It has four implementations; ranked
in order of preference, they are:
- GCC/Clang __atomic builtins
- GCC/Clang __sync builtins
- MSVC _Interlocked builtins
- C11 atomics, from <stdatomic.h>

The primary advantages are:
- Close adherence to the standard API gives us a defined memory model.
- Type safety: atomic objects are now separate types from non-atomic ones, so
  that it's impossible to mix up atomic and non-atomic updates (which is
  undefined behavior that compilers are starting to take advantage of).
- Efficiency: we can specify ordering for operations, avoiding fences and
  atomic operations on strongly ordered architectures (example:
  `atomic_write_u32(ptr, val);` involves a CAS loop, whereas
  `atomic_store(ptr, val, ATOMIC_RELEASE);` is a plain store.

This diff leaves in the current atomics API (implementing them in terms of the
backport).  This lets us transition uses over piecemeal.

Testing:
This is by nature hard to test. I've manually tested the first three options on
Linux on gcc by futzing with the #defines manually, on freebsd with gcc and
clang, on MSVC, and on OS X with clang.  All of these were x86 machines though,
and we don't have any test infrastructure set up for non-x86 platforms.
This commit is contained in:
David Goldblatt
2017-01-25 09:54:27 -08:00
committed by David Goldblatt
parent 957b8c5f21
commit d4ac7582f3
15 changed files with 947 additions and 672 deletions

View File

@@ -0,0 +1,111 @@
#ifndef JEMALLOC_INTERNAL_ATOMIC_H
#define JEMALLOC_INTERNAL_ATOMIC_H
#define ATOMIC_INLINE static inline
#if defined(JEMALLOC_GCC_ATOMIC_ATOMICS)
# include "jemalloc/internal/atomic_gcc_atomic.h"
#elif defined(JEMALLOC_GCC_SYNC_ATOMICS)
# include "jemalloc/internal/atomic_gcc_sync.h"
#elif defined(_MSC_VER)
# include "jemalloc/internal/atomic_msvc.h"
#elif defined(JEMALLOC_C11_ATOMICS)
# include "jemalloc/internal/atomic_c11.h"
#else
# error "Don't have atomics implemented on this platform."
#endif
/*
* This header gives more or less a backport of C11 atomics. The user can write
* JEMALLOC_GENERATE_ATOMICS(type, short_type, lg_sizeof_type); to generate
* counterparts of the C11 atomic functions for type, as so:
* JEMALLOC_GENERATE_ATOMICS(int *, pi, 3);
* and then write things like:
* int *some_ptr;
* atomic_pi_t atomic_ptr_to_int;
* atomic_store_pi(&atomic_ptr_to_int, some_ptr, ATOMIC_RELAXED);
* int *prev_value = atomic_exchange_pi(&ptr_to_int, NULL, ATOMIC_ACQ_REL);
* assert(some_ptr == prev_value);
* and expect things to work in the obvious way.
*
* Also included (with naming differences to avoid conflicts with the standard
* library):
* atomic_fence(atomic_memory_order_t) (mimics C11's atomic_thread_fence).
* ATOMIC_INIT (mimics C11's ATOMIC_VAR_INIT).
*/
/*
* Pure convenience, so that we don't have to type "atomic_memory_order_"
* quite so often.
*/
#define ATOMIC_RELAXED atomic_memory_order_relaxed
#define ATOMIC_ACQUIRE atomic_memory_order_acquire,
#define ATOMIC_RELEASE atomic_memory_order_release,
#define ATOMIC_ACQ_REL atomic_memory_order_acq_rel,
#define ATOMIC_SEQ_CST atomic_memory_order_seq_cst
/*
* In order to let us transition atomics usage piecemeal (and reason locally
* about memory orders), we'll support the previous API for a while.
*/
#define JEMALLOC_GENERATE_COMPATABILITY_ATOMICS(type, short_type) \
ATOMIC_INLINE type \
atomic_read_##short_type(type *p) { \
return atomic_load_##short_type ((atomic_##short_type##_t *)p, \
ATOMIC_SEQ_CST); \
} \
\
ATOMIC_INLINE void \
atomic_write_##short_type(type *p, const type val) { \
atomic_store_##short_type((atomic_##short_type##_t *)p, \
(type)val, ATOMIC_SEQ_CST); \
} \
ATOMIC_INLINE bool \
atomic_cas_##short_type(type *p, type c, type s) { \
/* Note the '!' -- atomic_cas inverts the usual semantics. */ \
return !atomic_compare_exchange_strong_##short_type( \
(atomic_##short_type##_t *)p, &c, s, ATOMIC_SEQ_CST, \
ATOMIC_SEQ_CST); \
}
#define JEMALLOC_GENERATE_COMPATABILITY_INT_ATOMICS(type, short_type) \
JEMALLOC_GENERATE_COMPATABILITY_ATOMICS(type, short_type) \
\
ATOMIC_INLINE type \
atomic_add_##short_type(type *p, type x) { \
return atomic_fetch_add_##short_type( \
(atomic_##short_type##_t *)p, x, ATOMIC_SEQ_CST) + x; \
} \
ATOMIC_INLINE type \
atomic_sub_##short_type(type *p, type x) { \
return atomic_fetch_sub_##short_type( \
(atomic_##short_type##_t *)p, x, ATOMIC_SEQ_CST) - x; \
}
JEMALLOC_GENERATE_ATOMICS(void *, p, LG_SIZEOF_PTR)
JEMALLOC_GENERATE_COMPATABILITY_ATOMICS(void *, p)
/*
* There's no actual guarantee that sizeof(bool) == 1, but it's true on the only
* platform that actually needs to know the size, MSVC.
*/
JEMALLOC_GENERATE_ATOMICS(bool, b, 0)
JEMALLOC_GENERATE_COMPATABILITY_ATOMICS(bool, b)
JEMALLOC_GENERATE_INT_ATOMICS(unsigned, u, LG_SIZEOF_INT)
JEMALLOC_GENERATE_COMPATABILITY_INT_ATOMICS(unsigned, u)
JEMALLOC_GENERATE_INT_ATOMICS(size_t, zu, LG_SIZEOF_PTR)
JEMALLOC_GENERATE_COMPATABILITY_INT_ATOMICS(size_t, zu)
JEMALLOC_GENERATE_INT_ATOMICS(uint32_t, u32, 2)
JEMALLOC_GENERATE_COMPATABILITY_INT_ATOMICS(uint32_t, u32)
# if (LG_SIZEOF_PTR == 3 || LG_SIZEOF_INT == 3)
JEMALLOC_GENERATE_INT_ATOMICS(uint64_t, u64, 3)
JEMALLOC_GENERATE_COMPATABILITY_INT_ATOMICS(uint64_t, u64)
# endif
#undef ATOMIC_INLINE
#endif /* JEMALLOC_INTERNAL_ATOMIC_H */

View File

@@ -0,0 +1,97 @@
#ifndef JEMALLOC_INTERNAL_ATOMIC_C11_H
#define JEMALLOC_INTERNAL_ATOMIC_C11_H
#include <stdatomic.h>
#define ATOMIC_INIT(...) ATOMIC_VAR_INIT(__VA_ARGS__)
#define atomic_memory_order_t memory_order
#define atomic_memory_order_relaxed memory_order_relaxed
#define atomic_memory_order_acquire memory_order_acquire
#define atomic_memory_order_release memory_order_release
#define atomic_memory_order_acq_rel memory_order_acq_rel
#define atomic_memory_order_seq_cst memory_order_seq_cst
#define atomic_fence atomic_thread_fence
#define JEMALLOC_GENERATE_ATOMICS(type, short_type, \
/* unused */ lg_size) \
typedef _Atomic(type) atomic_##short_type##_t; \
\
ATOMIC_INLINE type \
atomic_load_##short_type(const atomic_##short_type##_t *a, \
atomic_memory_order_t mo) { \
/* \
* A strict interpretation of the C standard prevents \
* atomic_load from taking a const argument, but it's \
* convenient for our purposes. This cast is a workaround. \
*/ \
atomic_##short_type##_t* a_nonconst = \
(atomic_##short_type##_t*)a; \
return atomic_load_explicit(a_nonconst, mo); \
} \
\
ATOMIC_INLINE void \
atomic_store_##short_type(atomic_##short_type##_t *a, \
type val, atomic_memory_order_t mo) { \
atomic_store_explicit(a, val, mo); \
} \
\
ATOMIC_INLINE type \
atomic_exchange_##short_type(atomic_##short_type##_t *a, type val, \
atomic_memory_order_t mo) { \
return atomic_exchange_explicit(a, val, mo); \
} \
\
ATOMIC_INLINE bool \
atomic_compare_exchange_weak_##short_type(atomic_##short_type##_t *a, \
type *expected, type desired, atomic_memory_order_t success_mo, \
atomic_memory_order_t failure_mo) { \
return atomic_compare_exchange_weak_explicit(a, expected, \
desired, success_mo, failure_mo); \
} \
\
ATOMIC_INLINE bool \
atomic_compare_exchange_strong_##short_type(atomic_##short_type##_t *a, \
type *expected, type desired, atomic_memory_order_t success_mo, \
atomic_memory_order_t failure_mo) { \
return atomic_compare_exchange_strong_explicit(a, expected, \
desired, success_mo, failure_mo); \
}
/*
* Integral types have some special operations available that non-integral ones
* lack.
*/
#define JEMALLOC_GENERATE_INT_ATOMICS(type, short_type, \
/* unused */ lg_size) \
JEMALLOC_GENERATE_ATOMICS(type, short_type, /* unused */ lg_size) \
\
ATOMIC_INLINE type \
atomic_fetch_add_##short_type(atomic_##short_type##_t *a, \
type val, atomic_memory_order_t mo) { \
return atomic_fetch_add_explicit(a, val, mo); \
} \
\
ATOMIC_INLINE type \
atomic_fetch_sub_##short_type(atomic_##short_type##_t *a, \
type val, atomic_memory_order_t mo) { \
return atomic_fetch_sub_explicit(a, val, mo); \
} \
ATOMIC_INLINE type \
atomic_fetch_and_##short_type(atomic_##short_type##_t *a, \
type val, atomic_memory_order_t mo) { \
return atomic_fetch_and_explicit(a, val, mo); \
} \
ATOMIC_INLINE type \
atomic_fetch_or_##short_type(atomic_##short_type##_t *a, \
type val, atomic_memory_order_t mo) { \
return atomic_fetch_or_explicit(a, val, mo); \
} \
ATOMIC_INLINE type \
atomic_fetch_xor_##short_type(atomic_##short_type##_t *a, \
type val, atomic_memory_order_t mo) { \
return atomic_fetch_xor_explicit(a, val, mo); \
}
#endif /* JEMALLOC_INTERNAL_ATOMIC_C11_H */

View File

@@ -1,12 +0,0 @@
#ifndef JEMALLOC_INTERNAL_ATOMIC_EXTERNS_H
#define JEMALLOC_INTERNAL_ATOMIC_EXTERNS_H
#if (LG_SIZEOF_PTR == 3 || LG_SIZEOF_INT == 3)
#define atomic_read_u64(p) atomic_add_u64(p, 0)
#endif
#define atomic_read_u32(p) atomic_add_u32(p, 0)
#define atomic_read_p(p) atomic_add_p(p, NULL)
#define atomic_read_zu(p) atomic_add_zu(p, 0)
#define atomic_read_u(p) atomic_add_u(p, 0)
#endif /* JEMALLOC_INTERNAL_ATOMIC_EXTERNS_H */

View File

@@ -0,0 +1,125 @@
#ifndef JEMALLOC_INTERNAL_ATOMIC_GCC_ATOMIC_H
#define JEMALLOC_INTERNAL_ATOMIC_GCC_ATOMIC_H
#define ATOMIC_INIT(...) {__VA_ARGS__}
typedef enum {
atomic_memory_order_relaxed,
atomic_memory_order_acquire,
atomic_memory_order_release,
atomic_memory_order_acq_rel,
atomic_memory_order_seq_cst
} atomic_memory_order_t;
ATOMIC_INLINE int
atomic_enum_to_builtin(atomic_memory_order_t mo) {
switch (mo) {
case atomic_memory_order_relaxed:
return __ATOMIC_RELAXED;
case atomic_memory_order_acquire:
return __ATOMIC_ACQUIRE;
case atomic_memory_order_release:
return __ATOMIC_RELEASE;
case atomic_memory_order_acq_rel:
return __ATOMIC_ACQ_REL;
case atomic_memory_order_seq_cst:
return __ATOMIC_SEQ_CST;
}
/* Can't actually happen; the switch is exhaustive. */
return __ATOMIC_SEQ_CST;
}
ATOMIC_INLINE void
atomic_fence(atomic_memory_order_t mo) {
__atomic_thread_fence(atomic_enum_to_builtin(mo));
}
#define JEMALLOC_GENERATE_ATOMICS(type, short_type, \
/* unused */ lg_size) \
typedef struct { \
type repr; \
} atomic_##short_type##_t; \
\
ATOMIC_INLINE type \
atomic_load_##short_type(const atomic_##short_type##_t *a, \
atomic_memory_order_t mo) { \
type result; \
__atomic_load(&a->repr, &result, atomic_enum_to_builtin(mo)); \
return result; \
} \
\
ATOMIC_INLINE void \
atomic_store_##short_type(atomic_##short_type##_t *a, type val, \
atomic_memory_order_t mo) { \
__atomic_store(&a->repr, &val, atomic_enum_to_builtin(mo)); \
} \
\
ATOMIC_INLINE type \
atomic_exchange_##short_type(atomic_##short_type##_t *a, type val, \
atomic_memory_order_t mo) { \
type result; \
__atomic_exchange(&a->repr, &val, &result, \
atomic_enum_to_builtin(mo)); \
return result; \
} \
\
ATOMIC_INLINE bool \
atomic_compare_exchange_weak_##short_type(atomic_##short_type##_t *a, \
type *expected, type desired, atomic_memory_order_t success_mo, \
atomic_memory_order_t failure_mo) { \
return __atomic_compare_exchange(&a->repr, expected, &desired, \
true, atomic_enum_to_builtin(success_mo), \
atomic_enum_to_builtin(failure_mo)); \
} \
\
ATOMIC_INLINE bool \
atomic_compare_exchange_strong_##short_type(atomic_##short_type##_t *a, \
type *expected, type desired, atomic_memory_order_t success_mo, \
atomic_memory_order_t failure_mo) { \
return __atomic_compare_exchange(&a->repr, expected, &desired, \
false, \
atomic_enum_to_builtin(success_mo), \
atomic_enum_to_builtin(failure_mo)); \
}
#define JEMALLOC_GENERATE_INT_ATOMICS(type, short_type, \
/* unused */ lg_size) \
JEMALLOC_GENERATE_ATOMICS(type, short_type, /* unused */ lg_size) \
\
ATOMIC_INLINE type \
atomic_fetch_add_##short_type(atomic_##short_type##_t *a, type val, \
atomic_memory_order_t mo) { \
return __atomic_fetch_add(&a->repr, val, \
atomic_enum_to_builtin(mo)); \
} \
\
ATOMIC_INLINE type \
atomic_fetch_sub_##short_type(atomic_##short_type##_t *a, type val, \
atomic_memory_order_t mo) { \
return __atomic_fetch_sub(&a->repr, val, \
atomic_enum_to_builtin(mo)); \
} \
\
ATOMIC_INLINE type \
atomic_fetch_and_##short_type(atomic_##short_type##_t *a, type val, \
atomic_memory_order_t mo) { \
return __atomic_fetch_and(&a->repr, val, \
atomic_enum_to_builtin(mo)); \
} \
\
ATOMIC_INLINE type \
atomic_fetch_or_##short_type(atomic_##short_type##_t *a, type val, \
atomic_memory_order_t mo) { \
return __atomic_fetch_or(&a->repr, val, \
atomic_enum_to_builtin(mo)); \
} \
\
ATOMIC_INLINE type \
atomic_fetch_xor_##short_type(atomic_##short_type##_t *a, type val, \
atomic_memory_order_t mo) { \
return __atomic_fetch_xor(&a->repr, val, \
atomic_enum_to_builtin(mo)); \
}
#endif /* JEMALLOC_INTERNAL_ATOMIC_GCC_ATOMIC_H */

View File

@@ -0,0 +1,191 @@
#ifndef JEMALLOC_INTERNAL_ATOMIC_GCC_SYNC_H
#define JEMALLOC_INTERNAL_ATOMIC_GCC_SYNC_H
#define ATOMIC_INIT(...) {__VA_ARGS__}
typedef enum {
atomic_memory_order_relaxed,
atomic_memory_order_acquire,
atomic_memory_order_release,
atomic_memory_order_acq_rel,
atomic_memory_order_seq_cst
} atomic_memory_order_t;
ATOMIC_INLINE void
atomic_fence(atomic_memory_order_t mo) {
/* Easy cases first: no barrier, and full barrier. */
if (mo == atomic_memory_order_relaxed) {
asm volatile("" ::: "memory");
return;
}
if (mo == atomic_memory_order_seq_cst) {
asm volatile("" ::: "memory");
__sync_synchronize();
asm volatile("" ::: "memory");
return;
}
asm volatile("" ::: "memory");
# if defined(__i386__) || defined(__x86_64__)
/* This is implicit on x86. */
# elif defined(__ppc__)
asm volatile("lwsync");
# elif defined(__sparc__) && defined(__arch64__)
if (mo == atomic_memory_order_acquire) {
asm volatile("membar #LoadLoad | #LoadStore");
} else if (mo == atomic_memory_order_release) {
asm volatile("membar #LoadStore | #StoreStore");
} else {
asm volatile("membar #LoadLoad | #LoadStore | #StoreStore");
}
# else
__sync_synchronize();
# endif
asm volatile("" ::: "memory");
}
/*
* A correct implementation of seq_cst loads and stores on weakly ordered
* architectures could do either of the following:
* 1. store() is weak-fence -> store -> strong fence, load() is load ->
* strong-fence.
* 2. store() is strong-fence -> store, load() is strong-fence -> load ->
* weak-fence.
* The tricky thing is, load() and store() above can be the load or store
* portions of a gcc __sync builtin, so we have to follow GCC's lead, which
* means going with strategy 2.
* On strongly ordered architectures, the natural strategy is to stick a strong
* fence after seq_cst stores, and have naked loads. So we want the strong
* fences in different places on different architectures.
* atomic_pre_sc_load_fence and atomic_post_sc_store_fence allow us to
* accomplish this.
*/
ATOMIC_INLINE void
atomic_pre_sc_load_fence() {
# if defined(__i386__) || defined(__x86_64__) || \
(defined(__sparc__) && defined(__arch64__))
atomic_fence(atomic_memory_order_relaxed);
# else
atomic_fence(atomic_memory_order_seq_cst);
# endif
}
ATOMIC_INLINE void
atomic_post_sc_store_fence() {
# if defined(__i386__) || defined(__x86_64__) || \
(defined(__sparc__) && defined(__arch64__))
atomic_fence(atomic_memory_order_seq_cst);
# else
atomic_fence(atomic_memory_order_relaxed);
# endif
}
#define JEMALLOC_GENERATE_ATOMICS(type, short_type, \
/* unused */ lg_size) \
typedef struct { \
type volatile repr; \
} atomic_##short_type##_t; \
\
ATOMIC_INLINE type \
atomic_load_##short_type(const atomic_##short_type##_t *a, \
atomic_memory_order_t mo) { \
if (mo == atomic_memory_order_seq_cst) { \
atomic_pre_sc_load_fence(); \
} \
type result = a->repr; \
if (mo != atomic_memory_order_relaxed) { \
atomic_fence(atomic_memory_order_acquire); \
} \
return result; \
} \
\
ATOMIC_INLINE void \
atomic_store_##short_type(atomic_##short_type##_t *a, \
type val, atomic_memory_order_t mo) { \
if (mo != atomic_memory_order_relaxed) { \
atomic_fence(atomic_memory_order_release); \
} \
a->repr = val; \
if (mo == atomic_memory_order_seq_cst) { \
atomic_post_sc_store_fence(); \
} \
} \
\
ATOMIC_INLINE type \
atomic_exchange_##short_type(atomic_##short_type##_t *a, type val, \
atomic_memory_order_t mo) { \
/* \
* Because of FreeBSD, we care about gcc 4.2, which doesn't have\
* an atomic exchange builtin. We fake it with a CAS loop. \
*/ \
while (true) { \
type old = a->repr; \
if (__sync_bool_compare_and_swap(&a->repr, old, val)) { \
return old; \
} \
} \
} \
\
ATOMIC_INLINE bool \
atomic_compare_exchange_weak_##short_type(atomic_##short_type##_t *a, \
type *expected, type desired, atomic_memory_order_t success_mo, \
atomic_memory_order_t failure_mo) { \
type prev = __sync_val_compare_and_swap(&a->repr, *expected, \
desired); \
if (prev == *expected) { \
return true; \
} else { \
*expected = prev; \
return false; \
} \
} \
ATOMIC_INLINE bool \
atomic_compare_exchange_strong_##short_type(atomic_##short_type##_t *a, \
type *expected, type desired, atomic_memory_order_t success_mo, \
atomic_memory_order_t failure_mo) { \
type prev = __sync_val_compare_and_swap(&a->repr, *expected, \
desired); \
if (prev == *expected) { \
return true; \
} else { \
*expected = prev; \
return false; \
} \
}
#define JEMALLOC_GENERATE_INT_ATOMICS(type, short_type, \
/* unused */ lg_size) \
JEMALLOC_GENERATE_ATOMICS(type, short_type, /* unused */ lg_size) \
\
ATOMIC_INLINE type \
atomic_fetch_add_##short_type(atomic_##short_type##_t *a, type val, \
atomic_memory_order_t mo) { \
return __sync_fetch_and_add(&a->repr, val); \
} \
\
ATOMIC_INLINE type \
atomic_fetch_sub_##short_type(atomic_##short_type##_t *a, type val, \
atomic_memory_order_t mo) { \
return __sync_fetch_and_sub(&a->repr, val); \
} \
\
ATOMIC_INLINE type \
atomic_fetch_and_##short_type(atomic_##short_type##_t *a, type val, \
atomic_memory_order_t mo) { \
return __sync_fetch_and_and(&a->repr, val); \
} \
\
ATOMIC_INLINE type \
atomic_fetch_or_##short_type(atomic_##short_type##_t *a, type val, \
atomic_memory_order_t mo) { \
return __sync_fetch_and_or(&a->repr, val); \
} \
\
ATOMIC_INLINE type \
atomic_fetch_xor_##short_type(atomic_##short_type##_t *a, type val, \
atomic_memory_order_t mo) { \
return __sync_fetch_and_xor(&a->repr, val); \
}
#endif /* JEMALLOC_INTERNAL_ATOMIC_GCC_SYNC_H */

View File

@@ -1,525 +0,0 @@
#ifndef JEMALLOC_INTERNAL_ATOMIC_INLINES_H
#define JEMALLOC_INTERNAL_ATOMIC_INLINES_H
/*
* All arithmetic functions return the arithmetic result of the atomic
* operation. Some atomic operation APIs return the value prior to mutation, in
* which case the following functions must redundantly compute the result so
* that it can be returned. These functions are normally inlined, so the extra
* operations can be optimized away if the return values aren't used by the
* callers.
*
* <t> atomic_read_<t>(<t> *p) { return *p; }
* <t> atomic_add_<t>(<t> *p, <t> x) { return *p += x; }
* <t> atomic_sub_<t>(<t> *p, <t> x) { return *p -= x; }
* bool atomic_cas_<t>(<t> *p, <t> c, <t> s)
* {
* if (*p != c)
* return true;
* *p = s;
* return false;
* }
* void atomic_write_<t>(<t> *p, <t> x) { *p = x; }
*/
#ifndef JEMALLOC_ENABLE_INLINE
# ifdef JEMALLOC_ATOMIC_U64
uint64_t atomic_add_u64(uint64_t *p, uint64_t x);
uint64_t atomic_sub_u64(uint64_t *p, uint64_t x);
bool atomic_cas_u64(uint64_t *p, uint64_t c, uint64_t s);
void atomic_write_u64(uint64_t *p, uint64_t x);
# endif
uint32_t atomic_add_u32(uint32_t *p, uint32_t x);
uint32_t atomic_sub_u32(uint32_t *p, uint32_t x);
bool atomic_cas_u32(uint32_t *p, uint32_t c, uint32_t s);
void atomic_write_u32(uint32_t *p, uint32_t x);
void *atomic_add_p(void **p, void *x);
void *atomic_sub_p(void **p, void *x);
bool atomic_cas_p(void **p, void *c, void *s);
void atomic_write_p(void **p, const void *x);
size_t atomic_add_zu(size_t *p, size_t x);
size_t atomic_sub_zu(size_t *p, size_t x);
bool atomic_cas_zu(size_t *p, size_t c, size_t s);
void atomic_write_zu(size_t *p, size_t x);
unsigned atomic_add_u(unsigned *p, unsigned x);
unsigned atomic_sub_u(unsigned *p, unsigned x);
bool atomic_cas_u(unsigned *p, unsigned c, unsigned s);
void atomic_write_u(unsigned *p, unsigned x);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_ATOMIC_C_))
/******************************************************************************/
/* 64-bit operations. */
#ifdef JEMALLOC_ATOMIC_U64
# if (defined(__amd64__) || defined(__x86_64__))
JEMALLOC_INLINE uint64_t
atomic_add_u64(uint64_t *p, uint64_t x) {
uint64_t t = x;
asm volatile (
"lock; xaddq %0, %1;"
: "+r" (t), "=m" (*p) /* Outputs. */
: "m" (*p) /* Inputs. */
);
return t + x;
}
JEMALLOC_INLINE uint64_t
atomic_sub_u64(uint64_t *p, uint64_t x) {
uint64_t t;
x = (uint64_t)(-(int64_t)x);
t = x;
asm volatile (
"lock; xaddq %0, %1;"
: "+r" (t), "=m" (*p) /* Outputs. */
: "m" (*p) /* Inputs. */
);
return t + x;
}
JEMALLOC_INLINE bool
atomic_cas_u64(uint64_t *p, uint64_t c, uint64_t s) {
uint8_t success;
asm volatile (
"lock; cmpxchgq %4, %0;"
"sete %1;"
: "=m" (*p), "=a" (success) /* Outputs. */
: "m" (*p), "a" (c), "r" (s) /* Inputs. */
: "memory" /* Clobbers. */
);
return !(bool)success;
}
JEMALLOC_INLINE void
atomic_write_u64(uint64_t *p, uint64_t x) {
asm volatile (
"xchgq %1, %0;" /* Lock is implied by xchgq. */
: "=m" (*p), "+r" (x) /* Outputs. */
: "m" (*p) /* Inputs. */
: "memory" /* Clobbers. */
);
}
# elif (defined(JEMALLOC_C11ATOMICS))
JEMALLOC_INLINE uint64_t
atomic_add_u64(uint64_t *p, uint64_t x) {
volatile atomic_uint_least64_t *a = (volatile atomic_uint_least64_t *)p;
return atomic_fetch_add(a, x) + x;
}
JEMALLOC_INLINE uint64_t
atomic_sub_u64(uint64_t *p, uint64_t x) {
volatile atomic_uint_least64_t *a = (volatile atomic_uint_least64_t *)p;
return atomic_fetch_sub(a, x) - x;
}
JEMALLOC_INLINE bool
atomic_cas_u64(uint64_t *p, uint64_t c, uint64_t s) {
volatile atomic_uint_least64_t *a = (volatile atomic_uint_least64_t *)p;
return !atomic_compare_exchange_strong(a, &c, s);
}
JEMALLOC_INLINE void
atomic_write_u64(uint64_t *p, uint64_t x) {
volatile atomic_uint_least64_t *a = (volatile atomic_uint_least64_t *)p;
atomic_store(a, x);
}
# elif (defined(JEMALLOC_ATOMIC9))
JEMALLOC_INLINE uint64_t
atomic_add_u64(uint64_t *p, uint64_t x) {
/*
* atomic_fetchadd_64() doesn't exist, but we only ever use this
* function on LP64 systems, so atomic_fetchadd_long() will do.
*/
assert(sizeof(uint64_t) == sizeof(unsigned long));
return atomic_fetchadd_long(p, (unsigned long)x) + x;
}
JEMALLOC_INLINE uint64_t
atomic_sub_u64(uint64_t *p, uint64_t x) {
assert(sizeof(uint64_t) == sizeof(unsigned long));
return atomic_fetchadd_long(p, (unsigned long)(-(long)x)) - x;
}
JEMALLOC_INLINE bool
atomic_cas_u64(uint64_t *p, uint64_t c, uint64_t s) {
assert(sizeof(uint64_t) == sizeof(unsigned long));
return !atomic_cmpset_long(p, (unsigned long)c, (unsigned long)s);
}
JEMALLOC_INLINE void
atomic_write_u64(uint64_t *p, uint64_t x) {
assert(sizeof(uint64_t) == sizeof(unsigned long));
atomic_store_rel_long(p, x);
}
# elif (defined(JEMALLOC_OSATOMIC))
JEMALLOC_INLINE uint64_t
atomic_add_u64(uint64_t *p, uint64_t x) {
return OSAtomicAdd64((int64_t)x, (int64_t *)p);
}
JEMALLOC_INLINE uint64_t
atomic_sub_u64(uint64_t *p, uint64_t x) {
return OSAtomicAdd64(-((int64_t)x), (int64_t *)p);
}
JEMALLOC_INLINE bool
atomic_cas_u64(uint64_t *p, uint64_t c, uint64_t s) {
return !OSAtomicCompareAndSwap64(c, s, (int64_t *)p);
}
JEMALLOC_INLINE void
atomic_write_u64(uint64_t *p, uint64_t x) {
uint64_t o;
/*The documented OSAtomic*() API does not expose an atomic exchange. */
do {
o = atomic_read_u64(p);
} while (atomic_cas_u64(p, o, x));
}
# elif (defined(_MSC_VER))
JEMALLOC_INLINE uint64_t
atomic_add_u64(uint64_t *p, uint64_t x) {
return InterlockedExchangeAdd64(p, x) + x;
}
JEMALLOC_INLINE uint64_t
atomic_sub_u64(uint64_t *p, uint64_t x) {
return InterlockedExchangeAdd64(p, -((int64_t)x)) - x;
}
JEMALLOC_INLINE bool
atomic_cas_u64(uint64_t *p, uint64_t c, uint64_t s) {
uint64_t o;
o = InterlockedCompareExchange64(p, s, c);
return o != c;
}
JEMALLOC_INLINE void
atomic_write_u64(uint64_t *p, uint64_t x) {
InterlockedExchange64(p, x);
}
# elif (defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8) || \
defined(JE_FORCE_SYNC_COMPARE_AND_SWAP_8))
JEMALLOC_INLINE uint64_t
atomic_add_u64(uint64_t *p, uint64_t x) {
return __sync_add_and_fetch(p, x);
}
JEMALLOC_INLINE uint64_t
atomic_sub_u64(uint64_t *p, uint64_t x) {
return __sync_sub_and_fetch(p, x);
}
JEMALLOC_INLINE bool
atomic_cas_u64(uint64_t *p, uint64_t c, uint64_t s) {
return !__sync_bool_compare_and_swap(p, c, s);
}
JEMALLOC_INLINE void
atomic_write_u64(uint64_t *p, uint64_t x) {
__sync_lock_test_and_set(p, x);
}
# else
# error "Missing implementation for 64-bit atomic operations"
# endif
#endif
/******************************************************************************/
/* 32-bit operations. */
#if (defined(__i386__) || defined(__amd64__) || defined(__x86_64__))
JEMALLOC_INLINE uint32_t
atomic_add_u32(uint32_t *p, uint32_t x) {
uint32_t t = x;
asm volatile (
"lock; xaddl %0, %1;"
: "+r" (t), "=m" (*p) /* Outputs. */
: "m" (*p) /* Inputs. */
);
return t + x;
}
JEMALLOC_INLINE uint32_t
atomic_sub_u32(uint32_t *p, uint32_t x) {
uint32_t t;
x = (uint32_t)(-(int32_t)x);
t = x;
asm volatile (
"lock; xaddl %0, %1;"
: "+r" (t), "=m" (*p) /* Outputs. */
: "m" (*p) /* Inputs. */
);
return t + x;
}
JEMALLOC_INLINE bool
atomic_cas_u32(uint32_t *p, uint32_t c, uint32_t s) {
uint8_t success;
asm volatile (
"lock; cmpxchgl %4, %0;"
"sete %1;"
: "=m" (*p), "=a" (success) /* Outputs. */
: "m" (*p), "a" (c), "r" (s) /* Inputs. */
: "memory"
);
return !(bool)success;
}
JEMALLOC_INLINE void
atomic_write_u32(uint32_t *p, uint32_t x) {
asm volatile (
"xchgl %1, %0;" /* Lock is implied by xchgl. */
: "=m" (*p), "+r" (x) /* Outputs. */
: "m" (*p) /* Inputs. */
: "memory" /* Clobbers. */
);
}
# elif (defined(JEMALLOC_C11ATOMICS))
JEMALLOC_INLINE uint32_t
atomic_add_u32(uint32_t *p, uint32_t x) {
volatile atomic_uint_least32_t *a = (volatile atomic_uint_least32_t *)p;
return atomic_fetch_add(a, x) + x;
}
JEMALLOC_INLINE uint32_t
atomic_sub_u32(uint32_t *p, uint32_t x) {
volatile atomic_uint_least32_t *a = (volatile atomic_uint_least32_t *)p;
return atomic_fetch_sub(a, x) - x;
}
JEMALLOC_INLINE bool
atomic_cas_u32(uint32_t *p, uint32_t c, uint32_t s) {
volatile atomic_uint_least32_t *a = (volatile atomic_uint_least32_t *)p;
return !atomic_compare_exchange_strong(a, &c, s);
}
JEMALLOC_INLINE void
atomic_write_u32(uint32_t *p, uint32_t x) {
volatile atomic_uint_least32_t *a = (volatile atomic_uint_least32_t *)p;
atomic_store(a, x);
}
#elif (defined(JEMALLOC_ATOMIC9))
JEMALLOC_INLINE uint32_t
atomic_add_u32(uint32_t *p, uint32_t x) {
return atomic_fetchadd_32(p, x) + x;
}
JEMALLOC_INLINE uint32_t
atomic_sub_u32(uint32_t *p, uint32_t x) {
return atomic_fetchadd_32(p, (uint32_t)(-(int32_t)x)) - x;
}
JEMALLOC_INLINE bool
atomic_cas_u32(uint32_t *p, uint32_t c, uint32_t s) {
return !atomic_cmpset_32(p, c, s);
}
JEMALLOC_INLINE void
atomic_write_u32(uint32_t *p, uint32_t x) {
atomic_store_rel_32(p, x);
}
#elif (defined(JEMALLOC_OSATOMIC))
JEMALLOC_INLINE uint32_t
atomic_add_u32(uint32_t *p, uint32_t x) {
return OSAtomicAdd32((int32_t)x, (int32_t *)p);
}
JEMALLOC_INLINE uint32_t
atomic_sub_u32(uint32_t *p, uint32_t x) {
return OSAtomicAdd32(-((int32_t)x), (int32_t *)p);
}
JEMALLOC_INLINE bool
atomic_cas_u32(uint32_t *p, uint32_t c, uint32_t s) {
return !OSAtomicCompareAndSwap32(c, s, (int32_t *)p);
}
JEMALLOC_INLINE void
atomic_write_u32(uint32_t *p, uint32_t x) {
uint32_t o;
/*The documented OSAtomic*() API does not expose an atomic exchange. */
do {
o = atomic_read_u32(p);
} while (atomic_cas_u32(p, o, x));
}
#elif (defined(_MSC_VER))
JEMALLOC_INLINE uint32_t
atomic_add_u32(uint32_t *p, uint32_t x) {
return InterlockedExchangeAdd(p, x) + x;
}
JEMALLOC_INLINE uint32_t
atomic_sub_u32(uint32_t *p, uint32_t x) {
return InterlockedExchangeAdd(p, -((int32_t)x)) - x;
}
JEMALLOC_INLINE bool
atomic_cas_u32(uint32_t *p, uint32_t c, uint32_t s) {
uint32_t o;
o = InterlockedCompareExchange(p, s, c);
return o != c;
}
JEMALLOC_INLINE void
atomic_write_u32(uint32_t *p, uint32_t x) {
InterlockedExchange(p, x);
}
#elif (defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4) || \
defined(JE_FORCE_SYNC_COMPARE_AND_SWAP_4))
JEMALLOC_INLINE uint32_t
atomic_add_u32(uint32_t *p, uint32_t x) {
return __sync_add_and_fetch(p, x);
}
JEMALLOC_INLINE uint32_t
atomic_sub_u32(uint32_t *p, uint32_t x) {
return __sync_sub_and_fetch(p, x);
}
JEMALLOC_INLINE bool
atomic_cas_u32(uint32_t *p, uint32_t c, uint32_t s) {
return !__sync_bool_compare_and_swap(p, c, s);
}
JEMALLOC_INLINE void
atomic_write_u32(uint32_t *p, uint32_t x) {
__sync_lock_test_and_set(p, x);
}
#else
# error "Missing implementation for 32-bit atomic operations"
#endif
/******************************************************************************/
/* Pointer operations. */
JEMALLOC_INLINE void *
atomic_add_p(void **p, void *x) {
#if (LG_SIZEOF_PTR == 3)
return (void *)atomic_add_u64((uint64_t *)p, (uint64_t)x);
#elif (LG_SIZEOF_PTR == 2)
return (void *)atomic_add_u32((uint32_t *)p, (uint32_t)x);
#endif
}
JEMALLOC_INLINE void *
atomic_sub_p(void **p, void *x) {
#if (LG_SIZEOF_PTR == 3)
return (void *)atomic_add_u64((uint64_t *)p, (uint64_t)-((int64_t)x));
#elif (LG_SIZEOF_PTR == 2)
return (void *)atomic_add_u32((uint32_t *)p, (uint32_t)-((int32_t)x));
#endif
}
JEMALLOC_INLINE bool
atomic_cas_p(void **p, void *c, void *s) {
#if (LG_SIZEOF_PTR == 3)
return atomic_cas_u64((uint64_t *)p, (uint64_t)c, (uint64_t)s);
#elif (LG_SIZEOF_PTR == 2)
return atomic_cas_u32((uint32_t *)p, (uint32_t)c, (uint32_t)s);
#endif
}
JEMALLOC_INLINE void
atomic_write_p(void **p, const void *x) {
#if (LG_SIZEOF_PTR == 3)
atomic_write_u64((uint64_t *)p, (uint64_t)x);
#elif (LG_SIZEOF_PTR == 2)
atomic_write_u32((uint32_t *)p, (uint32_t)x);
#endif
}
/******************************************************************************/
/* size_t operations. */
JEMALLOC_INLINE size_t
atomic_add_zu(size_t *p, size_t x) {
#if (LG_SIZEOF_PTR == 3)
return (size_t)atomic_add_u64((uint64_t *)p, (uint64_t)x);
#elif (LG_SIZEOF_PTR == 2)
return (size_t)atomic_add_u32((uint32_t *)p, (uint32_t)x);
#endif
}
JEMALLOC_INLINE size_t
atomic_sub_zu(size_t *p, size_t x) {
#if (LG_SIZEOF_PTR == 3)
return (size_t)atomic_add_u64((uint64_t *)p, (uint64_t)-((int64_t)x));
#elif (LG_SIZEOF_PTR == 2)
return (size_t)atomic_add_u32((uint32_t *)p, (uint32_t)-((int32_t)x));
#endif
}
JEMALLOC_INLINE bool
atomic_cas_zu(size_t *p, size_t c, size_t s) {
#if (LG_SIZEOF_PTR == 3)
return atomic_cas_u64((uint64_t *)p, (uint64_t)c, (uint64_t)s);
#elif (LG_SIZEOF_PTR == 2)
return atomic_cas_u32((uint32_t *)p, (uint32_t)c, (uint32_t)s);
#endif
}
JEMALLOC_INLINE void
atomic_write_zu(size_t *p, size_t x) {
#if (LG_SIZEOF_PTR == 3)
atomic_write_u64((uint64_t *)p, (uint64_t)x);
#elif (LG_SIZEOF_PTR == 2)
atomic_write_u32((uint32_t *)p, (uint32_t)x);
#endif
}
/******************************************************************************/
/* unsigned operations. */
JEMALLOC_INLINE unsigned
atomic_add_u(unsigned *p, unsigned x) {
#if (LG_SIZEOF_INT == 3)
return (unsigned)atomic_add_u64((uint64_t *)p, (uint64_t)x);
#elif (LG_SIZEOF_INT == 2)
return (unsigned)atomic_add_u32((uint32_t *)p, (uint32_t)x);
#endif
}
JEMALLOC_INLINE unsigned
atomic_sub_u(unsigned *p, unsigned x) {
#if (LG_SIZEOF_INT == 3)
return (unsigned)atomic_add_u64((uint64_t *)p, (uint64_t)-((int64_t)x));
#elif (LG_SIZEOF_INT == 2)
return (unsigned)atomic_add_u32((uint32_t *)p, (uint32_t)-((int32_t)x));
#endif
}
JEMALLOC_INLINE bool
atomic_cas_u(unsigned *p, unsigned c, unsigned s) {
#if (LG_SIZEOF_INT == 3)
return atomic_cas_u64((uint64_t *)p, (uint64_t)c, (uint64_t)s);
#elif (LG_SIZEOF_INT == 2)
return atomic_cas_u32((uint32_t *)p, (uint32_t)c, (uint32_t)s);
#endif
}
JEMALLOC_INLINE void
atomic_write_u(unsigned *p, unsigned x) {
#if (LG_SIZEOF_INT == 3)
atomic_write_u64((uint64_t *)p, (uint64_t)x);
#elif (LG_SIZEOF_INT == 2)
atomic_write_u32((uint32_t *)p, (uint32_t)x);
#endif
}
/******************************************************************************/
#endif
#endif /* JEMALLOC_INTERNAL_ATOMIC_INLINES_H */

View File

@@ -0,0 +1,158 @@
#ifndef JEMALLOC_INTERNAL_ATOMIC_MSVC_H
#define JEMALLOC_INTERNAL_ATOMIC_MSVC_H
#define ATOMIC_INIT(...) {__VA_ARGS__}
typedef enum {
atomic_memory_order_relaxed,
atomic_memory_order_acquire,
atomic_memory_order_release,
atomic_memory_order_acq_rel,
atomic_memory_order_seq_cst
} atomic_memory_order_t;
typedef char atomic_repr_0_t;
typedef short atomic_repr_1_t;
typedef long atomic_repr_2_t;
typedef __int64 atomic_repr_3_t;
ATOMIC_INLINE void
atomic_fence(atomic_memory_order_t mo) {
_ReadWriteBarrier();
# if defined(_M_ARM) || defined(_M_ARM64)
/* ARM needs a barrier for everything but relaxed. */
if (mo != atomic_memory_order_relaxed) {
MemoryBarrier();
}
# elif defined(_M_IX86) || defined (_M_X64)
/* x86 needs a barrier only for seq_cst. */
if (mo == atomic_memory_order_seq_cst) {
MemoryBarrier();
}
# else
# error "Don't know how to create atomics for this platform for MSVC."
# endif
_ReadWriteBarrier();
}
#define ATOMIC_INTERLOCKED_REPR(lg_size) atomic_repr_ ## lg_size ## _t
#define ATOMIC_CONCAT(a, b) ATOMIC_RAW_CONCAT(a, b)
#define ATOMIC_RAW_CONCAT(a, b) a ## b
#define ATOMIC_INTERLOCKED_NAME(base_name, lg_size) ATOMIC_CONCAT( \
base_name, ATOMIC_INTERLOCKED_SUFFIX(lg_size))
#define ATOMIC_INTERLOCKED_SUFFIX(lg_size) \
ATOMIC_CONCAT(ATOMIC_INTERLOCKED_SUFFIX_, lg_size)
#define ATOMIC_INTERLOCKED_SUFFIX_0 8
#define ATOMIC_INTERLOCKED_SUFFIX_1 16
#define ATOMIC_INTERLOCKED_SUFFIX_2
#define ATOMIC_INTERLOCKED_SUFFIX_3 64
#define JEMALLOC_GENERATE_ATOMICS(type, short_type, lg_size) \
typedef struct { \
ATOMIC_INTERLOCKED_REPR(lg_size) repr; \
} atomic_##short_type##_t; \
\
ATOMIC_INLINE type \
atomic_load_##short_type(const atomic_##short_type##_t *a, \
atomic_memory_order_t mo) { \
ATOMIC_INTERLOCKED_REPR(lg_size) ret = a->repr; \
if (mo != atomic_memory_order_relaxed) { \
atomic_fence(atomic_memory_order_acquire); \
} \
return (type) ret; \
} \
\
ATOMIC_INLINE void \
atomic_store_##short_type(atomic_##short_type##_t *a, \
type val, atomic_memory_order_t mo) { \
if (mo != atomic_memory_order_relaxed) { \
atomic_fence(atomic_memory_order_release); \
} \
a->repr = (ATOMIC_INTERLOCKED_REPR(lg_size)) val; \
if (mo == atomic_memory_order_seq_cst) { \
atomic_fence(atomic_memory_order_seq_cst); \
} \
} \
\
ATOMIC_INLINE type \
atomic_exchange_##short_type(atomic_##short_type##_t *a, type val, \
atomic_memory_order_t mo) { \
return (type)ATOMIC_INTERLOCKED_NAME(_InterlockedExchange, \
lg_size)(&a->repr, (ATOMIC_INTERLOCKED_REPR(lg_size))val); \
} \
\
ATOMIC_INLINE bool \
atomic_compare_exchange_weak_##short_type(atomic_##short_type##_t *a, \
type *expected, type desired, atomic_memory_order_t success_mo, \
atomic_memory_order_t failure_mo) { \
ATOMIC_INTERLOCKED_REPR(lg_size) e = \
(ATOMIC_INTERLOCKED_REPR(lg_size))*expected; \
ATOMIC_INTERLOCKED_REPR(lg_size) d = \
(ATOMIC_INTERLOCKED_REPR(lg_size))desired; \
ATOMIC_INTERLOCKED_REPR(lg_size) old = \
ATOMIC_INTERLOCKED_NAME(_InterlockedCompareExchange, \
lg_size)(&a->repr, d, e); \
if (old == e) { \
return true; \
} else { \
*expected = (type)old; \
return false; \
} \
} \
\
ATOMIC_INLINE bool \
atomic_compare_exchange_strong_##short_type(atomic_##short_type##_t *a, \
type *expected, type desired, atomic_memory_order_t success_mo, \
atomic_memory_order_t failure_mo) { \
/* We implement the weak version with strong semantics. */ \
return atomic_compare_exchange_weak_##short_type(a, expected, \
desired, success_mo, failure_mo); \
}
#define JEMALLOC_GENERATE_INT_ATOMICS(type, short_type, lg_size) \
JEMALLOC_GENERATE_ATOMICS(type, short_type, lg_size) \
\
ATOMIC_INLINE type \
atomic_fetch_add_##short_type(atomic_##short_type##_t *a, \
type val, atomic_memory_order_t mo) { \
return (type)ATOMIC_INTERLOCKED_NAME(_InterlockedExchangeAdd, \
lg_size)(&a->repr, (ATOMIC_INTERLOCKED_REPR(lg_size))val); \
} \
\
ATOMIC_INLINE type \
atomic_fetch_sub_##short_type(atomic_##short_type##_t *a, \
type val, atomic_memory_order_t mo) { \
/* \
* MSVC warns on negation of unsigned operands, but for us it \
* gives exactly the right semantics (MAX_TYPE + 1 - operand). \
*/ \
__pragma(warning(push)) \
__pragma(warning(disable: 4146)) \
return atomic_fetch_add_##short_type(a, -val, mo); \
__pragma(warning(pop)) \
} \
ATOMIC_INLINE type \
atomic_fetch_and_##short_type(atomic_##short_type##_t *a, \
type val, atomic_memory_order_t mo) { \
return (type)ATOMIC_INTERLOCKED_NAME(_InterlockedAnd, lg_size)( \
&a->repr, (ATOMIC_INTERLOCKED_REPR(lg_size))val); \
} \
ATOMIC_INLINE type \
atomic_fetch_or_##short_type(atomic_##short_type##_t *a, \
type val, atomic_memory_order_t mo) { \
return (type)ATOMIC_INTERLOCKED_NAME(_InterlockedOr, lg_size)( \
&a->repr, (ATOMIC_INTERLOCKED_REPR(lg_size))val); \
} \
ATOMIC_INLINE type \
atomic_fetch_xor_##short_type(atomic_##short_type##_t *a, \
type val, atomic_memory_order_t mo) { \
return (type)ATOMIC_INTERLOCKED_NAME(_InterlockedXor, lg_size)( \
&a->repr, (ATOMIC_INTERLOCKED_REPR(lg_size))val); \
}
#endif /* JEMALLOC_INTERNAL_ATOMIC_MSVC_H */

View File

@@ -1,8 +0,0 @@
#ifndef JEMALLOC_INTERNAL_ATOMIC_TYPES_H
#define JEMALLOC_INTERNAL_ATOMIC_TYPES_H
#if (LG_SIZEOF_PTR == 3 || LG_SIZEOF_INT == 3)
# define JEMALLOC_ATOMIC_U64
#endif
#endif /* JEMALLOC_INTERNAL_ATOMIC_TYPES_H */

View File

@@ -146,14 +146,6 @@ static const bool have_thp =
#endif
;
#if defined(JEMALLOC_C11ATOMICS) && !defined(__cplusplus)
#include <stdatomic.h>
#endif
#ifdef JEMALLOC_ATOMIC9
#include <machine/atomic.h>
#endif
#if (defined(JEMALLOC_OSATOMIC) || defined(JEMALLOC_OSSPIN))
#include <libkern/OSAtomic.h>
#endif
@@ -199,10 +191,21 @@ static const bool have_thp =
* its translation unit). Each component is now broken up into multiple header
* files, corresponding to the sections above (e.g. instead of "tsd.h", we now
* have "tsd_types.h", "tsd_structs.h", "tsd_externs.h", "tsd_inlines.h").
*
* Those files which have been converted to explicitly include their
* inter-component dependencies are now in the initial HERMETIC HEADERS
* section. These headers may still rely on this file for system headers and
* global jemalloc headers, however.
*/
#include "jemalloc/internal/jemalloc_internal_macros.h"
/******************************************************************************/
/* HERMETIC HEADERS */
/******************************************************************************/
#include "jemalloc/internal/atomic.h"
/******************************************************************************/
/* TYPES */
/******************************************************************************/
@@ -380,7 +383,6 @@ typedef unsigned szind_t;
#include "jemalloc/internal/nstime_types.h"
#include "jemalloc/internal/util_types.h"
#include "jemalloc/internal/atomic_types.h"
#include "jemalloc/internal/spin_types.h"
#include "jemalloc/internal/prng_types.h"
#include "jemalloc/internal/ticker_types.h"
@@ -489,7 +491,6 @@ void jemalloc_postfork_child(void);
#include "jemalloc/internal/nstime_externs.h"
#include "jemalloc/internal/util_externs.h"
#include "jemalloc/internal/atomic_externs.h"
#include "jemalloc/internal/ckh_externs.h"
#include "jemalloc/internal/stats_externs.h"
#include "jemalloc/internal/ctl_externs.h"
@@ -513,7 +514,6 @@ void jemalloc_postfork_child(void);
/******************************************************************************/
#include "jemalloc/internal/util_inlines.h"
#include "jemalloc/internal/atomic_inlines.h"
#include "jemalloc/internal/spin_inlines.h"
#include "jemalloc/internal/prng_inlines.h"
#include "jemalloc/internal/ticker_inlines.h"

View File

@@ -30,16 +30,13 @@
#undef LG_VADDR
/* Defined if C11 atomics are available. */
#undef JEMALLOC_C11ATOMICS
#undef JEMALLOC_C11_ATOMICS
/* Defined if the equivalent of FreeBSD's atomic(9) functions are available. */
#undef JEMALLOC_ATOMIC9
/* Defined if GCC __atomic atomics are available. */
#undef JEMALLOC_GCC_ATOMIC_ATOMICS
/*
* Defined if OSAtomic*() functions are available, as provided by Darwin, and
* documented in the atomic(3) manual page.
*/
#undef JEMALLOC_OSATOMIC
/* Defined if GCC __sync atomics are available. */
#undef JEMALLOC_GCC_SYNC_ATOMICS
/*
* Defined if __sync_add_and_fetch(uint32_t *, uint32_t) and

View File

@@ -72,26 +72,6 @@ arena_tdata_get
arena_tdata_get_hard
arenas
arenas_tdata_cleanup
atomic_add_p
atomic_add_u
atomic_add_u32
atomic_add_u64
atomic_add_zu
atomic_cas_p
atomic_cas_u
atomic_cas_u32
atomic_cas_u64
atomic_cas_zu
atomic_sub_p
atomic_sub_u
atomic_sub_u32
atomic_sub_u64
atomic_sub_zu
atomic_write_p
atomic_write_u
atomic_write_u32
atomic_write_u64
atomic_write_zu
b0get
base_alloc
base_boot