Optimize away the tsd_fast() check on fastpath.
Fold the tsd_state check onto the event threshold check. The fast threshold is set to 0 when tsd switch to non-nominal. The fast_threshold can be reset by remote threads, to refect the non nominal tsd state change.
This commit is contained in:
parent
1decf958d1
commit
dd649c9485
@ -27,6 +27,7 @@ void thread_event_trigger(tsd_t *tsd, bool delay_event);
|
|||||||
void thread_event_rollback(tsd_t *tsd, size_t diff);
|
void thread_event_rollback(tsd_t *tsd, size_t diff);
|
||||||
void thread_event_update(tsd_t *tsd);
|
void thread_event_update(tsd_t *tsd);
|
||||||
void thread_event_boot();
|
void thread_event_boot();
|
||||||
|
void thread_event_recompute_fast_threshold(tsd_t *tsd);
|
||||||
void tsd_thread_event_init(tsd_t *tsd);
|
void tsd_thread_event_init(tsd_t *tsd);
|
||||||
|
|
||||||
/*
|
/*
|
||||||
@ -43,9 +44,7 @@ void tsd_thread_event_init(tsd_t *tsd);
|
|||||||
/* List of all thread event counters. */
|
/* List of all thread event counters. */
|
||||||
#define ITERATE_OVER_ALL_COUNTERS \
|
#define ITERATE_OVER_ALL_COUNTERS \
|
||||||
C(thread_allocated) \
|
C(thread_allocated) \
|
||||||
C(thread_allocated_next_event_fast) \
|
|
||||||
C(thread_allocated_last_event) \
|
C(thread_allocated_last_event) \
|
||||||
C(thread_allocated_next_event) \
|
|
||||||
ITERATE_OVER_ALL_EVENTS \
|
ITERATE_OVER_ALL_EVENTS \
|
||||||
C(prof_sample_last_event)
|
C(prof_sample_last_event)
|
||||||
|
|
||||||
@ -81,6 +80,60 @@ ITERATE_OVER_ALL_COUNTERS
|
|||||||
*/
|
*/
|
||||||
#undef E
|
#undef E
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Two malloc fastpath getters -- use the unsafe getters since tsd may be
|
||||||
|
* non-nominal, in which case the fast_threshold will be set to 0. This allows
|
||||||
|
* checking for events and tsd non-nominal in a single branch.
|
||||||
|
*
|
||||||
|
* Note that these can only be used on the fastpath.
|
||||||
|
*/
|
||||||
|
JEMALLOC_ALWAYS_INLINE uint64_t
|
||||||
|
thread_allocated_malloc_fastpath(tsd_t *tsd) {
|
||||||
|
return *tsd_thread_allocatedp_get_unsafe(tsd);
|
||||||
|
}
|
||||||
|
|
||||||
|
JEMALLOC_ALWAYS_INLINE uint64_t
|
||||||
|
thread_allocated_next_event_malloc_fastpath(tsd_t *tsd) {
|
||||||
|
uint64_t v = *tsd_thread_allocated_next_event_fastp_get_unsafe(tsd);
|
||||||
|
assert(v <= THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX);
|
||||||
|
return v;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Below 3 for next_event_fast. */
|
||||||
|
JEMALLOC_ALWAYS_INLINE uint64_t
|
||||||
|
thread_allocated_next_event_fast_get(tsd_t *tsd) {
|
||||||
|
uint64_t v = tsd_thread_allocated_next_event_fast_get(tsd);
|
||||||
|
assert(v <= THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX);
|
||||||
|
return v;
|
||||||
|
}
|
||||||
|
|
||||||
|
JEMALLOC_ALWAYS_INLINE void
|
||||||
|
thread_allocated_next_event_fast_set(tsd_t *tsd, uint64_t v) {
|
||||||
|
assert(v <= THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX);
|
||||||
|
*tsd_thread_allocated_next_event_fastp_get(tsd) = v;
|
||||||
|
}
|
||||||
|
|
||||||
|
JEMALLOC_ALWAYS_INLINE void
|
||||||
|
thread_allocated_next_event_fast_set_non_nominal(tsd_t *tsd) {
|
||||||
|
/*
|
||||||
|
* Set the fast threshold to zero when tsd is non-nominal. Use the
|
||||||
|
* unsafe getter as this may get called during tsd init and clean up.
|
||||||
|
*/
|
||||||
|
*tsd_thread_allocated_next_event_fastp_get_unsafe(tsd) = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* For next_event. Setter also updates the fast threshold. */
|
||||||
|
JEMALLOC_ALWAYS_INLINE uint64_t
|
||||||
|
thread_allocated_next_event_get(tsd_t *tsd) {
|
||||||
|
return tsd_thread_allocated_next_event_get(tsd);
|
||||||
|
}
|
||||||
|
|
||||||
|
JEMALLOC_ALWAYS_INLINE void
|
||||||
|
thread_allocated_next_event_set(tsd_t *tsd, uint64_t v) {
|
||||||
|
*tsd_thread_allocated_next_eventp_get(tsd) = v;
|
||||||
|
thread_event_recompute_fast_threshold(tsd);
|
||||||
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* The function checks in debug mode whether the thread event counters are in
|
* The function checks in debug mode whether the thread event counters are in
|
||||||
* a consistent state, which forms the invariants before and after each round
|
* a consistent state, which forms the invariants before and after each round
|
||||||
|
@ -110,7 +110,7 @@ typedef void (*test_callback_t)(int *);
|
|||||||
/* reentrancy_level */ 0, \
|
/* reentrancy_level */ 0, \
|
||||||
/* narenas_tdata */ 0, \
|
/* narenas_tdata */ 0, \
|
||||||
/* thread_allocated */ 0, \
|
/* thread_allocated */ 0, \
|
||||||
/* thread_allocated_next_event_fast */ THREAD_EVENT_MIN_START_WAIT, \
|
/* thread_allocated_next_event_fast */ 0, \
|
||||||
/* thread_deallocated */ 0, \
|
/* thread_deallocated */ 0, \
|
||||||
/* rtree_ctx */ RTREE_CTX_ZERO_INITIALIZER, \
|
/* rtree_ctx */ RTREE_CTX_ZERO_INITIALIZER, \
|
||||||
/* thread_allocated_last_event */ 0, \
|
/* thread_allocated_last_event */ 0, \
|
||||||
|
@ -2354,7 +2354,7 @@ je_malloc(size_t size) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
tsd_t *tsd = tsd_get(false);
|
tsd_t *tsd = tsd_get(false);
|
||||||
if (unlikely((size > SC_LOOKUP_MAXCLASS) || !tsd || !tsd_fast(tsd))) {
|
if (unlikely((size > SC_LOOKUP_MAXCLASS) || tsd == NULL)) {
|
||||||
return malloc_default(size);
|
return malloc_default(size);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -2373,13 +2373,17 @@ je_malloc(size_t size) {
|
|||||||
assert(ind < SC_NBINS);
|
assert(ind < SC_NBINS);
|
||||||
assert(size <= SC_SMALL_MAXCLASS);
|
assert(size <= SC_SMALL_MAXCLASS);
|
||||||
|
|
||||||
uint64_t thread_allocated_after = thread_allocated_get(tsd) + usize;
|
uint64_t allocated = thread_allocated_malloc_fastpath(tsd);
|
||||||
assert(thread_allocated_next_event_fast_get(tsd) <=
|
uint64_t threshold = thread_allocated_next_event_malloc_fastpath(tsd);
|
||||||
THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX);
|
/*
|
||||||
if (unlikely(thread_allocated_after >=
|
* Check for events and tsd non-nominal (fast_threshold will be set to
|
||||||
thread_allocated_next_event_fast_get(tsd))) {
|
* 0) in a single branch.
|
||||||
|
*/
|
||||||
|
uint64_t allocated_after = allocated + usize;
|
||||||
|
if (unlikely(allocated_after >= threshold)) {
|
||||||
return malloc_default(size);
|
return malloc_default(size);
|
||||||
}
|
}
|
||||||
|
assert(tsd_fast(tsd));
|
||||||
|
|
||||||
tcache_t *tcache = tsd_tcachep_get(tsd);
|
tcache_t *tcache = tsd_tcachep_get(tsd);
|
||||||
cache_bin_t *bin = tcache_small_bin_get(tcache, ind);
|
cache_bin_t *bin = tcache_small_bin_get(tcache, ind);
|
||||||
@ -2387,7 +2391,7 @@ je_malloc(size_t size) {
|
|||||||
void *ret = cache_bin_alloc_easy_reduced(bin, &tcache_success);
|
void *ret = cache_bin_alloc_easy_reduced(bin, &tcache_success);
|
||||||
|
|
||||||
if (tcache_success) {
|
if (tcache_success) {
|
||||||
thread_allocated_set(tsd, thread_allocated_after);
|
thread_allocated_set(tsd, allocated_after);
|
||||||
if (config_stats) {
|
if (config_stats) {
|
||||||
bin->tstats.nrequests++;
|
bin->tstats.nrequests++;
|
||||||
}
|
}
|
||||||
|
@ -103,10 +103,11 @@ thread_event_assert_invariants_debug(tsd_t *tsd) {
|
|||||||
uint64_t next_event_fast = thread_allocated_next_event_fast_get(tsd);
|
uint64_t next_event_fast = thread_allocated_next_event_fast_get(tsd);
|
||||||
|
|
||||||
assert(last_event != next_event);
|
assert(last_event != next_event);
|
||||||
if (next_event <= THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX) {
|
if (next_event > THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX ||
|
||||||
assert(next_event_fast == next_event);
|
!tsd_fast(tsd)) {
|
||||||
} else {
|
|
||||||
assert(next_event_fast == 0U);
|
assert(next_event_fast == 0U);
|
||||||
|
} else {
|
||||||
|
assert(next_event_fast == next_event);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* The subtraction is intentionally susceptible to underflow. */
|
/* The subtraction is intentionally susceptible to underflow. */
|
||||||
@ -128,15 +129,77 @@ thread_event_assert_invariants_debug(tsd_t *tsd) {
|
|||||||
(interval < min_wait && interval == THREAD_EVENT_MAX_INTERVAL));
|
(interval < min_wait && interval == THREAD_EVENT_MAX_INTERVAL));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Synchronization around the fast threshold in tsd --
|
||||||
|
* There are two threads to consider in the synchronization here:
|
||||||
|
* - The owner of the tsd being updated by a slow path change
|
||||||
|
* - The remote thread, doing that slow path change.
|
||||||
|
*
|
||||||
|
* As a design constraint, we want to ensure that a slow-path transition cannot
|
||||||
|
* be ignored for arbitrarily long, and that if the remote thread causes a
|
||||||
|
* slow-path transition and then communicates with the owner thread that it has
|
||||||
|
* occurred, then the owner will go down the slow path on the next allocator
|
||||||
|
* operation (so that we don't want to just wait until the owner hits its slow
|
||||||
|
* path reset condition on its own).
|
||||||
|
*
|
||||||
|
* Here's our strategy to do that:
|
||||||
|
*
|
||||||
|
* The remote thread will update the slow-path stores to TSD variables, issue a
|
||||||
|
* SEQ_CST fence, and then update the TSD next_event_fast counter. The owner
|
||||||
|
* thread will update next_event_fast, issue an SEQ_CST fence, and then check
|
||||||
|
* its TSD to see if it's on the slow path.
|
||||||
|
|
||||||
|
* This is fairly straightforward when 64-bit atomics are supported. Assume that
|
||||||
|
* the remote fence is sandwiched between two owner fences in the reset pathway.
|
||||||
|
* The case where there is no preceding or trailing owner fence (i.e. because
|
||||||
|
* the owner thread is near the beginning or end of its life) can be analyzed
|
||||||
|
* similarly. The owner store to next_event_fast preceding the earlier owner
|
||||||
|
* fence will be earlier in coherence order than the remote store to it, so that
|
||||||
|
* the owner thread will go down the slow path once the store becomes visible to
|
||||||
|
* it, which is no later than the time of the second fence.
|
||||||
|
|
||||||
|
* The case where we don't support 64-bit atomics is trickier, since word
|
||||||
|
* tearing is possible. We'll repeat the same analysis, and look at the two
|
||||||
|
* owner fences sandwiching the remote fence. The next_event_fast stores done
|
||||||
|
* alongside the earlier owner fence cannot overwrite any of the remote stores
|
||||||
|
* (since they precede the earlier owner fence in sb, which precedes the remote
|
||||||
|
* fence in sc, which precedes the remote stores in sb). After the second owner
|
||||||
|
* fence there will be a re-check of the slow-path variables anyways, so the
|
||||||
|
* "owner will notice that it's on the slow path eventually" guarantee is
|
||||||
|
* satisfied. To make sure that the out-of-band-messaging constraint is as well,
|
||||||
|
* note that either the message passing is sequenced before the second owner
|
||||||
|
* fence (in which case the remote stores happen before the second set of owner
|
||||||
|
* stores, so malloc sees a value of zero for next_event_fast and goes down the
|
||||||
|
* slow path), or it is not (in which case the owner sees the tsd slow-path
|
||||||
|
* writes on its previous update). This leaves open the possibility that the
|
||||||
|
* remote thread will (at some arbitrary point in the future) zero out one half
|
||||||
|
* of the owner thread's next_event_fast, but that's always safe (it just sends
|
||||||
|
* it down the slow path earlier).
|
||||||
|
*/
|
||||||
|
void
|
||||||
|
thread_event_recompute_fast_threshold(tsd_t *tsd) {
|
||||||
|
if (tsd_state_get(tsd) != tsd_state_nominal) {
|
||||||
|
/* Check first because this is also called on purgatory. */
|
||||||
|
thread_allocated_next_event_fast_set_non_nominal(tsd);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
uint64_t next_event = thread_allocated_next_event_get(tsd);
|
||||||
|
uint64_t next_event_fast = (next_event <=
|
||||||
|
THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX) ? next_event : 0U;
|
||||||
|
thread_allocated_next_event_fast_set(tsd, next_event_fast);
|
||||||
|
|
||||||
|
atomic_fence(ATOMIC_SEQ_CST);
|
||||||
|
if (tsd_state_get(tsd) != tsd_state_nominal) {
|
||||||
|
thread_allocated_next_event_fast_set_non_nominal(tsd);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
static void
|
static void
|
||||||
thread_event_adjust_thresholds_helper(tsd_t *tsd, uint64_t wait) {
|
thread_event_adjust_thresholds_helper(tsd_t *tsd, uint64_t wait) {
|
||||||
assert(wait <= THREAD_EVENT_MAX_START_WAIT);
|
assert(wait <= THREAD_EVENT_MAX_START_WAIT);
|
||||||
uint64_t next_event = thread_allocated_last_event_get(tsd) + (wait <=
|
uint64_t next_event = thread_allocated_last_event_get(tsd) + (wait <=
|
||||||
THREAD_EVENT_MAX_INTERVAL ? wait : THREAD_EVENT_MAX_INTERVAL);
|
THREAD_EVENT_MAX_INTERVAL ? wait : THREAD_EVENT_MAX_INTERVAL);
|
||||||
thread_allocated_next_event_set(tsd, next_event);
|
thread_allocated_next_event_set(tsd, next_event);
|
||||||
uint64_t next_event_fast = (next_event <=
|
|
||||||
THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX) ? next_event : 0U;
|
|
||||||
thread_allocated_next_event_fast_set(tsd, next_event_fast);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static uint64_t
|
static uint64_t
|
||||||
|
10
src/tsd.c
10
src/tsd.c
@ -115,8 +115,11 @@ tsd_force_recompute(tsdn_t *tsdn) {
|
|||||||
ql_foreach(remote_tsd, &tsd_nominal_tsds, TSD_MANGLE(tcache).tsd_link) {
|
ql_foreach(remote_tsd, &tsd_nominal_tsds, TSD_MANGLE(tcache).tsd_link) {
|
||||||
assert(tsd_atomic_load(&remote_tsd->state, ATOMIC_RELAXED)
|
assert(tsd_atomic_load(&remote_tsd->state, ATOMIC_RELAXED)
|
||||||
<= tsd_state_nominal_max);
|
<= tsd_state_nominal_max);
|
||||||
tsd_atomic_store(&remote_tsd->state, tsd_state_nominal_recompute,
|
tsd_atomic_store(&remote_tsd->state,
|
||||||
ATOMIC_RELAXED);
|
tsd_state_nominal_recompute, ATOMIC_RELAXED);
|
||||||
|
/* See comments in thread_event_recompute_fast_threshold(). */
|
||||||
|
atomic_fence(ATOMIC_SEQ_CST);
|
||||||
|
thread_allocated_next_event_fast_set_non_nominal(remote_tsd);
|
||||||
}
|
}
|
||||||
malloc_mutex_unlock(tsdn, &tsd_nominal_tsds_lock);
|
malloc_mutex_unlock(tsdn, &tsd_nominal_tsds_lock);
|
||||||
}
|
}
|
||||||
@ -175,6 +178,8 @@ tsd_slow_update(tsd_t *tsd) {
|
|||||||
old_state = tsd_atomic_exchange(&tsd->state, new_state,
|
old_state = tsd_atomic_exchange(&tsd->state, new_state,
|
||||||
ATOMIC_ACQUIRE);
|
ATOMIC_ACQUIRE);
|
||||||
} while (old_state == tsd_state_nominal_recompute);
|
} while (old_state == tsd_state_nominal_recompute);
|
||||||
|
|
||||||
|
thread_event_recompute_fast_threshold(tsd);
|
||||||
}
|
}
|
||||||
|
|
||||||
void
|
void
|
||||||
@ -213,6 +218,7 @@ tsd_state_set(tsd_t *tsd, uint8_t new_state) {
|
|||||||
tsd_slow_update(tsd);
|
tsd_slow_update(tsd);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
thread_event_recompute_fast_threshold(tsd);
|
||||||
}
|
}
|
||||||
|
|
||||||
static bool
|
static bool
|
||||||
|
@ -7,8 +7,6 @@ TEST_BEGIN(test_next_event_fast_roll_back) {
|
|||||||
THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX - 8U);
|
THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX - 8U);
|
||||||
thread_allocated_next_event_set(tsd,
|
thread_allocated_next_event_set(tsd,
|
||||||
THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX);
|
THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX);
|
||||||
thread_allocated_next_event_fast_set(tsd,
|
|
||||||
THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX);
|
|
||||||
#define E(event, condition) \
|
#define E(event, condition) \
|
||||||
event##_event_wait_set(tsd, \
|
event##_event_wait_set(tsd, \
|
||||||
THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX);
|
THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX);
|
||||||
@ -27,7 +25,6 @@ TEST_BEGIN(test_next_event_fast_resume) {
|
|||||||
THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX + 8U);
|
THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX + 8U);
|
||||||
thread_allocated_next_event_set(tsd,
|
thread_allocated_next_event_set(tsd,
|
||||||
THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX + 16U);
|
THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX + 16U);
|
||||||
thread_allocated_next_event_fast_set(tsd, 0);
|
|
||||||
#define E(event, condition) \
|
#define E(event, condition) \
|
||||||
event##_event_wait_set(tsd, \
|
event##_event_wait_set(tsd, \
|
||||||
THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX + 16U);
|
THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX + 16U);
|
||||||
|
Loading…
Reference in New Issue
Block a user