Refactor jemalloc.c into multiple source files.

Fix a stats bug in large object curruns accounting.

Replace tcache_bin_fill() with arena_tcache_fill(), and fix a bug in an OOM
error path.

Fix API name mangling to coexist with __attribute__((malloc)).
This commit is contained in:
Jason Evans 2010-01-16 09:53:50 -08:00
parent 64bd7661a8
commit e476f8a161
26 changed files with 5977 additions and 5506 deletions

View File

@ -10,5 +10,5 @@ syntax: regexp
^jemalloc/lib$ ^jemalloc/lib$
^jemalloc/Makefile$ ^jemalloc/Makefile$
^jemalloc/src/jemalloc_defs\.h$ ^jemalloc/src/jemalloc_defs\.h$
^jemalloc/src/[a-z0-9]+.o$ ^jemalloc/src/[a-z0-9_]+.o$
^jemalloc/src/[a-z0-9]+.d$ ^jemalloc/src/[a-z0-9_]+.d$

View File

@ -36,21 +36,25 @@ REV := 0
# List of files to be installed. # List of files to be installed.
BINS := @bins@ BINS := @bins@
CHDRS := @srcroot@src/jemalloc.h @objroot@src/jemalloc_defs.h CHDRS := @srcroot@src/jemalloc.h @objroot@src/jemalloc_defs.h
CSRCS := @srcroot@src/jemalloc.c CSRCS := @srcroot@src/jemalloc.c @srcroot@src/jemalloc_arena.c \
@srcroot@src/jemalloc_base.c @srcroot@src/jemalloc_chunk.c \
@srcroot@src/jemalloc_extent.c @srcroot@src/jemalloc_huge.c \
@srcroot@src/jemalloc_mutex.c @srcroot@src/jemalloc_stats.c \
@srcroot@src/jemalloc_tcache.c @srcroot@src/jemalloc_trace.c
DSOS := @objroot@lib/libjemalloc.so.$(REV) @objroot@lib/libjemalloc.so \ DSOS := @objroot@lib/libjemalloc.so.$(REV) @objroot@lib/libjemalloc.so \
@objroot@lib/libjemalloc_pic.a @objroot@lib/libjemalloc_pic.a
MAN3 := @objroot@doc/jemalloc.3 MAN3 := @objroot@doc/jemalloc.3
#
# Include generated dependency files.
#
-include $(CSRCS:@srcroot@%.c=@objroot@%.d)
.PHONY: all dist install check clean distclean relclean .PHONY: all dist install check clean distclean relclean
# Default target. # Default target.
all: $(DSOS) bins all: $(DSOS) bins
#
# Include generated dependency files.
#
-include $(CSRCS:@srcroot@%.c=@objroot@%.d)
@objroot@src/%.o: @srcroot@src/%.c @objroot@src/%.o: @srcroot@src/%.c
$(CC) $(CFLAGS) -c $(CPPFLAGS) -o $@ $< $(CC) $(CFLAGS) -c $(CPPFLAGS) -o $@ $<
@$(SHELL) -ec "$(CC) -MM $(CPPFLAGS) $< | sed \"s/\($(subst /,\/,$(notdir $(basename $@)))\)\.o\([ :]*\)/$(subst /,\/,$(strip $(dir $@)))\1.o \2/g\" > $(@:%.o=%.d)" @$(SHELL) -ec "$(CC) -MM $(CPPFLAGS) $< | sed \"s/\($(subst /,\/,$(notdir $(basename $@)))\)\.o\([ :]*\)/$(subst /,\/,$(strip $(dir $@)))\1.o \2/g\" > $(@:%.o=%.d)"

View File

@ -152,6 +152,9 @@ JE_COMPILABLE([__attribute__ syntax],
[attribute]) [attribute])
if test "x${attribute}" = "xyes" ; then if test "x${attribute}" = "xyes" ; then
AC_DEFINE([JEMALLOC_HAVE_ATTR], [ ]) AC_DEFINE([JEMALLOC_HAVE_ATTR], [ ])
if test "x$GCC" = "xyes" ; then
JE_CFLAGS_APPEND([-fvisibility=internal])
fi
fi fi
dnl Platform-specific settings. abi and RPATH can probably be determined dnl Platform-specific settings. abi and RPATH can probably be determined
@ -254,16 +257,7 @@ if test "x$JEMALLOC_PREFIX" != "x" ; then
AC_DEFINE([JEMALLOC_PREFIX], [ ]) AC_DEFINE([JEMALLOC_PREFIX], [ ])
jemalloc_prefix=$JEMALLOC_PREFIX jemalloc_prefix=$JEMALLOC_PREFIX
AC_SUBST([jemalloc_prefix]) AC_SUBST([jemalloc_prefix])
AC_DEFINE_UNQUOTED([malloc], [${JEMALLOC_PREFIX}malloc]) AC_DEFINE_UNQUOTED([JEMALLOC_P(string_that_no_one_should_want_to_use_as_a_jemalloc_API_prefix)], [${JEMALLOC_PREFIX}##string_that_no_one_should_want_to_use_as_a_jemalloc_API_prefix])
AC_DEFINE_UNQUOTED([calloc], [${JEMALLOC_PREFIX}calloc])
AC_DEFINE_UNQUOTED([posix_memalign], [${JEMALLOC_PREFIX}posix_memalign])
AC_DEFINE_UNQUOTED([realloc], [${JEMALLOC_PREFIX}realloc])
AC_DEFINE_UNQUOTED([free], [${JEMALLOC_PREFIX}free])
AC_DEFINE_UNQUOTED([malloc_usable_size], [${JEMALLOC_PREFIX}malloc_usable_size])
AC_DEFINE_UNQUOTED([malloc_tcache_flush], [${JEMALLOC_PREFIX}malloc_tcache_flush])
AC_DEFINE_UNQUOTED([malloc_stats_print], [${JEMALLOC_PREFIX}malloc_stats_print])
AC_DEFINE_UNQUOTED([malloc_options], [${JEMALLOC_PREFIX}malloc_options])
AC_DEFINE_UNQUOTED([malloc_message], [${JEMALLOC_PREFIX}malloc_message])
fi fi
dnl Do not compile with debugging by default. dnl Do not compile with debugging by default.

File diff suppressed because it is too large Load Diff

View File

@ -5,23 +5,26 @@ extern "C" {
#endif #endif
#include "jemalloc_defs.h" #include "jemalloc_defs.h"
#ifndef JEMALLOC_P
# define JEMALLOC_P(s) s
#endif
extern const char *malloc_options; extern const char *JEMALLOC_P(malloc_options);
extern void (*malloc_message)(const char *p1, extern void (*JEMALLOC_P(malloc_message))(const char *p1,
const char *p2, const char *p3, const char *p4); const char *p2, const char *p3, const char *p4);
void *malloc(size_t size) JEMALLOC_ATTR(malloc); void *JEMALLOC_P(malloc)(size_t size) JEMALLOC_ATTR(malloc);
void *calloc(size_t num, size_t size) JEMALLOC_ATTR(malloc); void *JEMALLOC_P(calloc)(size_t num, size_t size) JEMALLOC_ATTR(malloc);
int posix_memalign(void **memptr, size_t alignment, size_t size) int JEMALLOC_P(posix_memalign)(void **memptr, size_t alignment, size_t size)
JEMALLOC_ATTR(nonnull(1)); JEMALLOC_ATTR(nonnull(1));
void *realloc(void *ptr, size_t size); void *JEMALLOC_P(realloc)(void *ptr, size_t size);
void free(void *ptr); void JEMALLOC_P(free)(void *ptr);
size_t malloc_usable_size(const void *ptr); size_t JEMALLOC_P(malloc_usable_size)(const void *ptr);
#ifdef JEMALLOC_TCACHE #ifdef JEMALLOC_TCACHE
void malloc_tcache_flush(void); void JEMALLOC_P(malloc_tcache_flush)(void);
#endif #endif
void malloc_stats_print(const char *opts); void JEMALLOC_P(malloc_stats_print)(const char *opts);
#ifdef __cplusplus #ifdef __cplusplus
}; };

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,460 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
/*
* Subpages are an artificially designated partitioning of pages. Their only
* purpose is to support subpage-spaced size classes.
*
* There must be at least 4 subpages per page, due to the way size classes are
* handled.
*/
#define LG_SUBPAGE 8
#define SUBPAGE ((size_t)(1U << LG_SUBPAGE))
#define SUBPAGE_MASK (SUBPAGE - 1)
/* Return the smallest subpage multiple that is >= s. */
#define SUBPAGE_CEILING(s) \
(((s) + SUBPAGE_MASK) & ~SUBPAGE_MASK)
#ifdef JEMALLOC_TINY
/* Smallest size class to support. */
# define LG_TINY_MIN 1
#endif
/*
* Maximum size class that is a multiple of the quantum, but not (necessarily)
* a power of 2. Above this size, allocations are rounded up to the nearest
* power of 2.
*/
#define LG_QSPACE_MAX_DEFAULT 7
/*
* Maximum size class that is a multiple of the cacheline, but not (necessarily)
* a power of 2. Above this size, allocations are rounded up to the nearest
* power of 2.
*/
#define LG_CSPACE_MAX_DEFAULT 9
/*
* Maximum medium size class. This must not be more than 1/4 of a chunk
* (LG_MEDIUM_MAX_DEFAULT <= LG_CHUNK_DEFAULT - 2).
*/
#define LG_MEDIUM_MAX_DEFAULT 15
/* Return the smallest medium size class that is >= s. */
#define MEDIUM_CEILING(s) \
(((s) + mspace_mask) & ~mspace_mask)
/*
* Soft limit on the number of medium size classes. Spacing between medium
* size classes never exceeds pagesize, which can force more than NBINS_MAX
* medium size classes.
*/
#define NMBINS_MAX 16
/*
* RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
* as small as possible such that this setting is still honored, without
* violating other constraints. The goal is to make runs as small as possible
* without exceeding a per run external fragmentation threshold.
*
* We use binary fixed point math for overhead computations, where the binary
* point is implicitly RUN_BFP bits to the left.
*
* Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
* honored for some/all object sizes, since there is one bit of header overhead
* per object (plus a constant). This constraint is relaxed (ignored) for runs
* that are so small that the per-region overhead is greater than:
*
* (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
*/
#define RUN_BFP 12
/* \/ Implicit binary fixed point. */
#define RUN_MAX_OVRHD 0x0000003dU
#define RUN_MAX_OVRHD_RELAX 0x00001800U
/* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
#define RUN_MAX_SMALL \
(arena_maxclass <= (1U << (CHUNK_MAP_LG_PG_RANGE + PAGE_SHIFT)) \
? arena_maxclass : (1U << (CHUNK_MAP_LG_PG_RANGE + \
PAGE_SHIFT)))
/*
* The minimum ratio of active:dirty pages per arena is computed as:
*
* (nactive >> opt_lg_dirty_mult) >= ndirty
*
* So, supposing that opt_lg_dirty_mult is 5, there can be no less than 32
* times as many active pages as dirty pages.
*/
#define LG_DIRTY_MULT_DEFAULT 5
typedef struct arena_chunk_map_s arena_chunk_map_t;
typedef struct arena_chunk_s arena_chunk_t;
typedef struct arena_run_s arena_run_t;
typedef struct arena_bin_s arena_bin_t;
typedef struct arena_s arena_t;
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
/* Each element of the chunk map corresponds to one page within the chunk. */
struct arena_chunk_map_s {
/*
* Linkage for run trees. There are two disjoint uses:
*
* 1) arena_t's runs_avail tree.
* 2) arena_run_t conceptually uses this linkage for in-use non-full
* runs, rather than directly embedding linkage.
*/
rb_node(arena_chunk_map_t) link;
/*
* Run address (or size) and various flags are stored together. The bit
* layout looks like (assuming 32-bit system):
*
* ???????? ???????? ????cccc ccccdzla
*
* ? : Unallocated: Run address for first/last pages, unset for internal
* pages.
* Small/medium: Don't care.
* Large: Run size for first page, unset for trailing pages.
* - : Unused.
* c : refcount (could overflow for PAGE_SIZE >= 128 KiB)
* d : dirty?
* z : zeroed?
* l : large?
* a : allocated?
*
* Following are example bit patterns for the three types of runs.
*
* p : run page offset
* s : run size
* x : don't care
* - : 0
* [dzla] : bit set
*
* Unallocated:
* ssssssss ssssssss ssss---- --------
* xxxxxxxx xxxxxxxx xxxx---- ----d---
* ssssssss ssssssss ssss---- -----z--
*
* Small/medium:
* pppppppp ppppcccc cccccccc cccc---a
* pppppppp ppppcccc cccccccc cccc---a
* pppppppp ppppcccc cccccccc cccc---a
*
* Large:
* ssssssss ssssssss ssss---- ------la
* -------- -------- -------- ------la
* -------- -------- -------- ------la
*/
size_t bits;
#define CHUNK_MAP_PG_MASK ((size_t)0xfff00000U)
#define CHUNK_MAP_PG_SHIFT 20
#define CHUNK_MAP_LG_PG_RANGE 12
#define CHUNK_MAP_RC_MASK ((size_t)0xffff0U)
#define CHUNK_MAP_RC_ONE ((size_t)0x00010U)
#define CHUNK_MAP_FLAGS_MASK ((size_t)0xfU)
#define CHUNK_MAP_DIRTY ((size_t)0x8U)
#define CHUNK_MAP_ZEROED ((size_t)0x4U)
#define CHUNK_MAP_LARGE ((size_t)0x2U)
#define CHUNK_MAP_ALLOCATED ((size_t)0x1U)
#define CHUNK_MAP_KEY (CHUNK_MAP_DIRTY | CHUNK_MAP_ALLOCATED)
};
typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
/* Arena chunk header. */
struct arena_chunk_s {
/* Arena that owns the chunk. */
arena_t *arena;
/* Linkage for the arena's chunks_dirty tree. */
rb_node(arena_chunk_t) link_dirty;
/*
* True if the chunk is currently in the chunks_dirty tree, due to
* having at some point contained one or more dirty pages. Removal
* from chunks_dirty is lazy, so (dirtied && ndirty == 0) is possible.
*/
bool dirtied;
/* Number of dirty pages. */
size_t ndirty;
/* Map of pages within chunk that keeps track of free/large/small. */
arena_chunk_map_t map[1]; /* Dynamically sized. */
};
typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
struct arena_run_s {
#ifdef JEMALLOC_DEBUG
uint32_t magic;
# define ARENA_RUN_MAGIC 0x384adf93
#endif
/* Bin this run is associated with. */
arena_bin_t *bin;
/* Index of first element that might have a free region. */
unsigned regs_minelm;
/* Number of free regions in run. */
unsigned nfree;
/* Bitmask of in-use regions (0: in use, 1: free). */
unsigned regs_mask[1]; /* Dynamically sized. */
};
struct arena_bin_s {
/*
* Current run being used to service allocations of this bin's size
* class.
*/
arena_run_t *runcur;
/*
* Tree of non-full runs. This tree is used when looking for an
* existing run when runcur is no longer usable. We choose the
* non-full run that is lowest in memory; this policy tends to keep
* objects packed well, and it can also help reduce the number of
* almost-empty chunks.
*/
arena_run_tree_t runs;
/* Size of regions in a run for this bin's size class. */
size_t reg_size;
/* Total size of a run for this bin's size class. */
size_t run_size;
/* Total number of regions in a run for this bin's size class. */
uint32_t nregs;
/* Number of elements in a run's regs_mask for this bin's size class. */
uint32_t regs_mask_nelms;
/* Offset of first region in a run for this bin's size class. */
uint32_t reg0_offset;
#ifdef JEMALLOC_STATS
/* Bin statistics. */
malloc_bin_stats_t stats;
#endif
};
struct arena_s {
#ifdef JEMALLOC_DEBUG
uint32_t magic;
# define ARENA_MAGIC 0x947d3d24
#endif
/* All operations on this arena require that lock be locked. */
malloc_mutex_t lock;
#ifdef JEMALLOC_STATS
arena_stats_t stats;
# ifdef JEMALLOC_TCACHE
/*
* List of tcaches for extant threads associated with this arena.
* Stats from these are merged incrementally, and at exit.
*/
ql_head(tcache_t) tcache_ql;
# endif
#endif
#ifdef JEMALLOC_TRACE
# define TRACE_BUF_SIZE 65536
unsigned trace_buf_end;
char trace_buf[TRACE_BUF_SIZE];
int trace_fd;
#endif
/* Tree of dirty-page-containing chunks this arena manages. */
arena_chunk_tree_t chunks_dirty;
/*
* In order to avoid rapid chunk allocation/deallocation when an arena
* oscillates right on the cusp of needing a new chunk, cache the most
* recently freed chunk. The spare is left in the arena's chunk trees
* until it is deleted.
*
* There is one spare chunk per arena, rather than one spare total, in
* order to avoid interactions between multiple threads that could make
* a single spare inadequate.
*/
arena_chunk_t *spare;
/* Number of pages in active runs. */
size_t nactive;
/*
* Current count of pages within unused runs that are potentially
* dirty, and for which madvise(... MADV_DONTNEED) has not been called.
* By tracking this, we can institute a limit on how much dirty unused
* memory is mapped for each arena.
*/
size_t ndirty;
/*
* Size/address-ordered tree of this arena's available runs. This tree
* is used for first-best-fit run allocation.
*/
arena_avail_tree_t runs_avail;
/*
* bins is used to store trees of free regions of the following sizes,
* assuming a 16-byte quantum, 4 KiB page size, and default
* JEMALLOC_OPTIONS.
*
* bins[i] | size |
* --------+--------+
* 0 | 2 |
* 1 | 4 |
* 2 | 8 |
* --------+--------+
* 3 | 16 |
* 4 | 32 |
* 5 | 48 |
* : :
* 8 | 96 |
* 9 | 112 |
* 10 | 128 |
* --------+--------+
* 11 | 192 |
* 12 | 256 |
* 13 | 320 |
* 14 | 384 |
* 15 | 448 |
* 16 | 512 |
* --------+--------+
* 17 | 768 |
* 18 | 1024 |
* 19 | 1280 |
* : :
* 27 | 3328 |
* 28 | 3584 |
* 29 | 3840 |
* --------+--------+
* 30 | 4 KiB |
* 31 | 6 KiB |
* 33 | 8 KiB |
* : :
* 43 | 28 KiB |
* 44 | 30 KiB |
* 45 | 32 KiB |
* --------+--------+
*/
arena_bin_t bins[1]; /* Dynamically sized. */
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern size_t opt_lg_qspace_max;
extern size_t opt_lg_cspace_max;
extern size_t opt_lg_medium_max;
extern ssize_t opt_lg_dirty_mult;
extern uint8_t const *small_size2bin;
/* Various bin-related settings. */
#ifdef JEMALLOC_TINY /* Number of (2^n)-spaced tiny bins. */
# define ntbins ((unsigned)(LG_QUANTUM - LG_TINY_MIN))
#else
# define ntbins 0
#endif
extern unsigned nqbins; /* Number of quantum-spaced bins. */
extern unsigned ncbins; /* Number of cacheline-spaced bins. */
extern unsigned nsbins; /* Number of subpage-spaced bins. */
extern unsigned nmbins; /* Number of medium bins. */
extern unsigned nbins;
extern unsigned mbin0; /* mbin offset (nbins - nmbins). */
#ifdef JEMALLOC_TINY
# define tspace_max ((size_t)(QUANTUM >> 1))
#endif
#define qspace_min QUANTUM
extern size_t qspace_max;
extern size_t cspace_min;
extern size_t cspace_max;
extern size_t sspace_min;
extern size_t sspace_max;
#define small_maxclass sspace_max
#define medium_min PAGE_SIZE
extern size_t medium_max;
#define bin_maxclass medium_max
/* Spacing between medium size classes. */
extern size_t lg_mspace;
extern size_t mspace_mask;
#ifdef JEMALLOC_TCACHE
void arena_tcache_fill(arena_t *arena, tcache_bin_t *tbin, size_t binind);
#endif
void *arena_malloc_small(arena_t *arena, size_t size, bool zero);
void *arena_malloc_medium(arena_t *arena, size_t size, bool zero);
void *arena_malloc(size_t size, bool zero);
void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
size_t alloc_size);
size_t arena_salloc(const void *ptr);
void arena_dalloc_bin(arena_t *arena, arena_chunk_t *chunk, void *ptr,
arena_chunk_map_t *mapelm);
void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr);
#ifdef JEMALLOC_STATS
void arena_stats_print(arena_t *arena, bool bins, bool large);
#endif
void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
bool arena_new(arena_t *arena, unsigned ind);
bool arena_boot0(void);
void arena_boot1(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
void arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_ARENA_C_))
JEMALLOC_INLINE void
arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
{
size_t pageind;
arena_chunk_map_t *mapelm;
assert(arena != NULL);
assert(arena->magic == ARENA_MAGIC);
assert(chunk->arena == arena);
assert(ptr != NULL);
assert(CHUNK_ADDR2BASE(ptr) != ptr);
pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
mapelm = &chunk->map[pageind];
assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
/* Small allocation. */
#ifdef JEMALLOC_TCACHE
tcache_t *tcache;
if ((tcache = tcache_get()) != NULL)
tcache_dalloc(tcache, ptr);
else {
#endif
malloc_mutex_lock(&arena->lock);
arena_dalloc_bin(arena, chunk, ptr, mapelm);
malloc_mutex_unlock(&arena->lock);
#ifdef JEMALLOC_TCACHE
}
#endif
} else
arena_dalloc_large(arena, chunk, ptr);
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/

View File

@ -0,0 +1,186 @@
#define JEMALLOC_BASE_C_
#include "jemalloc_internal.h"
#ifdef JEMALLOC_STATS
size_t base_mapped;
#endif
malloc_mutex_t base_mtx;
/*
* Current pages that are being used for internal memory allocations. These
* pages are carved up in cacheline-size quanta, so that there is no chance of
* false cache line sharing.
*/
static void *base_pages;
static void *base_next_addr;
static void *base_past_addr; /* Addr immediately past base_pages. */
static extent_node_t *base_nodes;
#ifdef JEMALLOC_DSS
static bool base_pages_alloc_dss(size_t minsize);
#endif
static bool base_pages_alloc_mmap(size_t minsize);
static bool base_pages_alloc(size_t minsize);
#ifdef JEMALLOC_DSS
static bool
base_pages_alloc_dss(size_t minsize)
{
/*
* Do special DSS allocation here, since base allocations don't need to
* be chunk-aligned.
*/
malloc_mutex_lock(&dss_mtx);
if (dss_prev != (void *)-1) {
intptr_t incr;
size_t csize = CHUNK_CEILING(minsize);
do {
/* Get the current end of the DSS. */
dss_max = sbrk(0);
/*
* Calculate how much padding is necessary to
* chunk-align the end of the DSS. Don't worry about
* dss_max not being chunk-aligned though.
*/
incr = (intptr_t)chunksize
- (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
assert(incr >= 0);
if ((size_t)incr < minsize)
incr += csize;
dss_prev = sbrk(incr);
if (dss_prev == dss_max) {
/* Success. */
dss_max = (void *)((intptr_t)dss_prev + incr);
base_pages = dss_prev;
base_next_addr = base_pages;
base_past_addr = dss_max;
#ifdef JEMALLOC_STATS
base_mapped += incr;
#endif
malloc_mutex_unlock(&dss_mtx);
return (false);
}
} while (dss_prev != (void *)-1);
}
malloc_mutex_unlock(&dss_mtx);
return (true);
}
#endif
static bool
base_pages_alloc_mmap(size_t minsize)
{
size_t csize;
assert(minsize != 0);
csize = PAGE_CEILING(minsize);
base_pages = pages_map(NULL, csize);
if (base_pages == NULL)
return (true);
base_next_addr = base_pages;
base_past_addr = (void *)((uintptr_t)base_pages + csize);
#ifdef JEMALLOC_STATS
base_mapped += csize;
#endif
return (false);
}
static bool
base_pages_alloc(size_t minsize)
{
#ifdef JEMALLOC_DSS
if (base_pages_alloc_dss(minsize) == false)
return (false);
if (minsize != 0)
#endif
{
if (base_pages_alloc_mmap(minsize) == false)
return (false);
}
return (true);
}
void *
base_alloc(size_t size)
{
void *ret;
size_t csize;
/* Round size up to nearest multiple of the cacheline size. */
csize = CACHELINE_CEILING(size);
malloc_mutex_lock(&base_mtx);
/* Make sure there's enough space for the allocation. */
if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
if (base_pages_alloc(csize)) {
malloc_mutex_unlock(&base_mtx);
return (NULL);
}
}
/* Allocate. */
ret = base_next_addr;
base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
malloc_mutex_unlock(&base_mtx);
return (ret);
}
extent_node_t *
base_node_alloc(void)
{
extent_node_t *ret;
malloc_mutex_lock(&base_mtx);
if (base_nodes != NULL) {
ret = base_nodes;
base_nodes = *(extent_node_t **)ret;
malloc_mutex_unlock(&base_mtx);
} else {
malloc_mutex_unlock(&base_mtx);
ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
}
return (ret);
}
void
base_node_dealloc(extent_node_t *node)
{
malloc_mutex_lock(&base_mtx);
*(extent_node_t **)node = base_nodes;
base_nodes = node;
malloc_mutex_unlock(&base_mtx);
}
bool
base_boot(void)
{
#ifdef JEMALLOC_STATS
base_mapped = 0;
#endif
#ifdef JEMALLOC_DSS
/*
* Allocate a base chunk here, since it doesn't actually have to be
* chunk-aligned. Doing this before allocating any other chunks allows
* the use of space that would otherwise be wasted.
*/
base_pages_alloc(0);
#endif
base_nodes = NULL;
if (malloc_mutex_init(&base_mtx))
return (true);
return (false);
}

View File

@ -0,0 +1,27 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#ifdef JEMALLOC_STATS
extern size_t base_mapped;
#endif
extern malloc_mutex_t base_mtx;
void *base_alloc(size_t size);
extent_node_t *base_node_alloc(void);
void base_node_dealloc(extent_node_t *node);
bool base_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/

View File

@ -0,0 +1,525 @@
#define JEMALLOC_CHUNK_C_
#include "jemalloc_internal.h"
/******************************************************************************/
/* Data. */
size_t opt_lg_chunk = LG_CHUNK_DEFAULT;
#ifdef JEMALLOC_STATS
chunk_stats_t stats_chunks;
#endif
/* Various chunk-related settings. */
size_t chunksize;
size_t chunksize_mask; /* (chunksize - 1). */
size_t chunk_npages;
size_t arena_chunk_header_npages;
size_t arena_maxclass; /* Max size class for arenas. */
#ifdef JEMALLOC_DSS
malloc_mutex_t dss_mtx;
void *dss_base;
void *dss_prev;
void *dss_max;
/*
* Trees of chunks that were previously allocated (trees differ only in node
* ordering). These are used when allocating chunks, in an attempt to re-use
* address space. Depending on function, different tree orderings are needed,
* which is why there are two trees with the same contents.
*/
static extent_tree_t dss_chunks_szad;
static extent_tree_t dss_chunks_ad;
#endif
/*
* Used by chunk_alloc_mmap() to decide whether to attempt the fast path and
* potentially avoid some system calls. We can get away without TLS here,
* since the state of mmap_unaligned only affects performance, rather than
* correct function.
*/
static
#ifndef NO_TLS
__thread
#endif
bool mmap_unaligned
#ifndef NO_TLS
JEMALLOC_ATTR(tls_model("initial-exec"))
#endif
;
/******************************************************************************/
/* Function prototypes for non-inline static functions. */
static void pages_unmap(void *addr, size_t size);
#ifdef JEMALLOC_DSS
static void *chunk_alloc_dss(size_t size);
static void *chunk_recycle_dss(size_t size, bool zero);
#endif
static void *chunk_alloc_mmap_slow(size_t size, bool unaligned);
static void *chunk_alloc_mmap(size_t size);
#ifdef JEMALLOC_DSS
static extent_node_t *chunk_dealloc_dss_record(void *chunk, size_t size);
static bool chunk_dealloc_dss(void *chunk, size_t size);
#endif
static void chunk_dealloc_mmap(void *chunk, size_t size);
/******************************************************************************/
void *
pages_map(void *addr, size_t size)
{
void *ret;
/*
* We don't use MAP_FIXED here, because it can cause the *replacement*
* of existing mappings, and we only want to create new mappings.
*/
ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
-1, 0);
assert(ret != NULL);
if (ret == MAP_FAILED)
ret = NULL;
else if (addr != NULL && ret != addr) {
/*
* We succeeded in mapping memory, but not in the right place.
*/
if (munmap(ret, size) == -1) {
char buf[STRERROR_BUF];
strerror_r(errno, buf, sizeof(buf));
malloc_write4("<jemalloc>", ": Error in munmap(): ",
buf, "\n");
if (opt_abort)
abort();
}
ret = NULL;
}
assert(ret == NULL || (addr == NULL && ret != addr)
|| (addr != NULL && ret == addr));
return (ret);
}
static void
pages_unmap(void *addr, size_t size)
{
if (munmap(addr, size) == -1) {
char buf[STRERROR_BUF];
strerror_r(errno, buf, sizeof(buf));
malloc_write4("<jemalloc>", ": Error in munmap(): ", buf, "\n");
if (opt_abort)
abort();
}
}
#ifdef JEMALLOC_DSS
static void *
chunk_alloc_dss(size_t size)
{
/*
* sbrk() uses a signed increment argument, so take care not to
* interpret a huge allocation request as a negative increment.
*/
if ((intptr_t)size < 0)
return (NULL);
malloc_mutex_lock(&dss_mtx);
if (dss_prev != (void *)-1) {
intptr_t incr;
/*
* The loop is necessary to recover from races with other
* threads that are using the DSS for something other than
* malloc.
*/
do {
void *ret;
/* Get the current end of the DSS. */
dss_max = sbrk(0);
/*
* Calculate how much padding is necessary to
* chunk-align the end of the DSS.
*/
incr = (intptr_t)size
- (intptr_t)CHUNK_ADDR2OFFSET(dss_max);
if (incr == (intptr_t)size)
ret = dss_max;
else {
ret = (void *)((intptr_t)dss_max + incr);
incr += size;
}
dss_prev = sbrk(incr);
if (dss_prev == dss_max) {
/* Success. */
dss_max = (void *)((intptr_t)dss_prev + incr);
malloc_mutex_unlock(&dss_mtx);
return (ret);
}
} while (dss_prev != (void *)-1);
}
malloc_mutex_unlock(&dss_mtx);
return (NULL);
}
static void *
chunk_recycle_dss(size_t size, bool zero)
{
extent_node_t *node, key;
key.addr = NULL;
key.size = size;
malloc_mutex_lock(&dss_mtx);
node = extent_tree_szad_nsearch(&dss_chunks_szad, &key);
if (node != NULL) {
void *ret = node->addr;
/* Remove node from the tree. */
extent_tree_szad_remove(&dss_chunks_szad, node);
if (node->size == size) {
extent_tree_ad_remove(&dss_chunks_ad, node);
base_node_dealloc(node);
} else {
/*
* Insert the remainder of node's address range as a
* smaller chunk. Its position within dss_chunks_ad
* does not change.
*/
assert(node->size > size);
node->addr = (void *)((uintptr_t)node->addr + size);
node->size -= size;
extent_tree_szad_insert(&dss_chunks_szad, node);
}
malloc_mutex_unlock(&dss_mtx);
if (zero)
memset(ret, 0, size);
return (ret);
}
malloc_mutex_unlock(&dss_mtx);
return (NULL);
}
#endif
static void *
chunk_alloc_mmap_slow(size_t size, bool unaligned)
{
void *ret;
size_t offset;
/* Beware size_t wrap-around. */
if (size + chunksize <= size)
return (NULL);
ret = pages_map(NULL, size + chunksize);
if (ret == NULL)
return (NULL);
/* Clean up unneeded leading/trailing space. */
offset = CHUNK_ADDR2OFFSET(ret);
if (offset != 0) {
/* Note that mmap() returned an unaligned mapping. */
unaligned = true;
/* Leading space. */
pages_unmap(ret, chunksize - offset);
ret = (void *)((uintptr_t)ret +
(chunksize - offset));
/* Trailing space. */
pages_unmap((void *)((uintptr_t)ret + size),
offset);
} else {
/* Trailing space only. */
pages_unmap((void *)((uintptr_t)ret + size),
chunksize);
}
/*
* If mmap() returned an aligned mapping, reset mmap_unaligned so that
* the next chunk_alloc_mmap() execution tries the fast allocation
* method.
*/
if (unaligned == false)
mmap_unaligned = false;
return (ret);
}
static void *
chunk_alloc_mmap(size_t size)
{
void *ret;
/*
* Ideally, there would be a way to specify alignment to mmap() (like
* NetBSD has), but in the absence of such a feature, we have to work
* hard to efficiently create aligned mappings. The reliable, but
* slow method is to create a mapping that is over-sized, then trim the
* excess. However, that always results in at least one call to
* pages_unmap().
*
* A more optimistic approach is to try mapping precisely the right
* amount, then try to append another mapping if alignment is off. In
* practice, this works out well as long as the application is not
* interleaving mappings via direct mmap() calls. If we do run into a
* situation where there is an interleaved mapping and we are unable to
* extend an unaligned mapping, our best option is to switch to the
* slow method until mmap() returns another aligned mapping. This will
* tend to leave a gap in the memory map that is too small to cause
* later problems for the optimistic method.
*
* Another possible confounding factor is address space layout
* randomization (ASLR), which causes mmap(2) to disregard the
* requested address. mmap_unaligned tracks whether the previous
* chunk_alloc_mmap() execution received any unaligned or relocated
* mappings, and if so, the current execution will immediately fall
* back to the slow method. However, we keep track of whether the fast
* method would have succeeded, and if so, we make a note to try the
* fast method next time.
*/
if (mmap_unaligned == false) {
size_t offset;
ret = pages_map(NULL, size);
if (ret == NULL)
return (NULL);
offset = CHUNK_ADDR2OFFSET(ret);
if (offset != 0) {
mmap_unaligned = true;
/* Try to extend chunk boundary. */
if (pages_map((void *)((uintptr_t)ret + size),
chunksize - offset) == NULL) {
/*
* Extension failed. Clean up, then revert to
* the reliable-but-expensive method.
*/
pages_unmap(ret, size);
ret = chunk_alloc_mmap_slow(size, true);
} else {
/* Clean up unneeded leading space. */
pages_unmap(ret, chunksize - offset);
ret = (void *)((uintptr_t)ret + (chunksize -
offset));
}
}
}
ret = chunk_alloc_mmap_slow(size, false);
return (ret);
}
void *
chunk_alloc(size_t size, bool zero)
{
void *ret;
assert(size != 0);
assert((size & chunksize_mask) == 0);
#ifdef JEMALLOC_DSS
ret = chunk_recycle_dss(size, zero);
if (ret != NULL) {
goto RETURN;
}
ret = chunk_alloc_dss(size);
if (ret != NULL)
goto RETURN;
#endif
ret = chunk_alloc_mmap(size);
if (ret != NULL)
goto RETURN;
/* All strategies for allocation failed. */
ret = NULL;
RETURN:
#ifdef JEMALLOC_STATS
if (ret != NULL) {
stats_chunks.nchunks += (size / chunksize);
stats_chunks.curchunks += (size / chunksize);
}
if (stats_chunks.curchunks > stats_chunks.highchunks)
stats_chunks.highchunks = stats_chunks.curchunks;
#endif
assert(CHUNK_ADDR2BASE(ret) == ret);
return (ret);
}
#ifdef JEMALLOC_DSS
static extent_node_t *
chunk_dealloc_dss_record(void *chunk, size_t size)
{
extent_node_t *node, *prev, key;
key.addr = (void *)((uintptr_t)chunk + size);
node = extent_tree_ad_nsearch(&dss_chunks_ad, &key);
/* Try to coalesce forward. */
if (node != NULL && node->addr == key.addr) {
/*
* Coalesce chunk with the following address range. This does
* not change the position within dss_chunks_ad, so only
* remove/insert from/into dss_chunks_szad.
*/
extent_tree_szad_remove(&dss_chunks_szad, node);
node->addr = chunk;
node->size += size;
extent_tree_szad_insert(&dss_chunks_szad, node);
} else {
/*
* Coalescing forward failed, so insert a new node. Drop
* dss_mtx during node allocation, since it is possible that a
* new base chunk will be allocated.
*/
malloc_mutex_unlock(&dss_mtx);
node = base_node_alloc();
malloc_mutex_lock(&dss_mtx);
if (node == NULL)
return (NULL);
node->addr = chunk;
node->size = size;
extent_tree_ad_insert(&dss_chunks_ad, node);
extent_tree_szad_insert(&dss_chunks_szad, node);
}
/* Try to coalesce backward. */
prev = extent_tree_ad_prev(&dss_chunks_ad, node);
if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
chunk) {
/*
* Coalesce chunk with the previous address range. This does
* not change the position within dss_chunks_ad, so only
* remove/insert node from/into dss_chunks_szad.
*/
extent_tree_szad_remove(&dss_chunks_szad, prev);
extent_tree_ad_remove(&dss_chunks_ad, prev);
extent_tree_szad_remove(&dss_chunks_szad, node);
node->addr = prev->addr;
node->size += prev->size;
extent_tree_szad_insert(&dss_chunks_szad, node);
base_node_dealloc(prev);
}
return (node);
}
static bool
chunk_dealloc_dss(void *chunk, size_t size)
{
malloc_mutex_lock(&dss_mtx);
if ((uintptr_t)chunk >= (uintptr_t)dss_base
&& (uintptr_t)chunk < (uintptr_t)dss_max) {
extent_node_t *node;
/* Try to coalesce with other unused chunks. */
node = chunk_dealloc_dss_record(chunk, size);
if (node != NULL) {
chunk = node->addr;
size = node->size;
}
/* Get the current end of the DSS. */
dss_max = sbrk(0);
/*
* Try to shrink the DSS if this chunk is at the end of the
* DSS. The sbrk() call here is subject to a race condition
* with threads that use brk(2) or sbrk(2) directly, but the
* alternative would be to leak memory for the sake of poorly
* designed multi-threaded programs.
*/
if ((void *)((uintptr_t)chunk + size) == dss_max
&& (dss_prev = sbrk(-(intptr_t)size)) == dss_max) {
/* Success. */
dss_max = (void *)((intptr_t)dss_prev - (intptr_t)size);
if (node != NULL) {
extent_tree_szad_remove(&dss_chunks_szad, node);
extent_tree_ad_remove(&dss_chunks_ad, node);
base_node_dealloc(node);
}
malloc_mutex_unlock(&dss_mtx);
} else {
malloc_mutex_unlock(&dss_mtx);
madvise(chunk, size, MADV_DONTNEED);
}
return (false);
}
malloc_mutex_unlock(&dss_mtx);
return (true);
}
#endif
static void
chunk_dealloc_mmap(void *chunk, size_t size)
{
pages_unmap(chunk, size);
}
void
chunk_dealloc(void *chunk, size_t size)
{
assert(chunk != NULL);
assert(CHUNK_ADDR2BASE(chunk) == chunk);
assert(size != 0);
assert((size & chunksize_mask) == 0);
#ifdef JEMALLOC_STATS
stats_chunks.curchunks -= (size / chunksize);
#endif
#ifdef JEMALLOC_DSS
if (chunk_dealloc_dss(chunk, size) == false)
return;
#endif
chunk_dealloc_mmap(chunk, size);
}
bool
chunk_boot(void)
{
/* Set variables according to the value of opt_lg_chunk. */
chunksize = (1LU << opt_lg_chunk);
assert(chunksize >= PAGE_SIZE);
chunksize_mask = chunksize - 1;
chunk_npages = (chunksize >> PAGE_SHIFT);
#ifdef JEMALLOC_STATS
memset(&stats_chunks, 0, sizeof(chunk_stats_t));
#endif
#ifdef JEMALLOC_DSS
if (malloc_mutex_init(&dss_mtx))
return (true);
dss_base = sbrk(0);
dss_prev = dss_base;
dss_max = dss_base;
extent_tree_szad_new(&dss_chunks_szad);
extent_tree_ad_new(&dss_chunks_ad);
#endif
return (false);
}

View File

@ -0,0 +1,66 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
/*
* Size and alignment of memory chunks that are allocated by the OS's virtual
* memory system.
*/
#define LG_CHUNK_DEFAULT 22
/* Return the chunk address for allocation address a. */
#define CHUNK_ADDR2BASE(a) \
((void *)((uintptr_t)(a) & ~chunksize_mask))
/* Return the chunk offset of address a. */
#define CHUNK_ADDR2OFFSET(a) \
((size_t)((uintptr_t)(a) & chunksize_mask))
/* Return the smallest chunk multiple that is >= s. */
#define CHUNK_CEILING(s) \
(((s) + chunksize_mask) & ~chunksize_mask)
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#ifdef JEMALLOC_STATS
/* Chunk statistics. */
extern chunk_stats_t stats_chunks;
#endif
extern size_t opt_lg_chunk;
extern size_t chunksize;
extern size_t chunksize_mask; /* (chunksize - 1). */
extern size_t chunk_npages;
extern size_t arena_chunk_header_npages;
extern size_t arena_maxclass; /* Max size class for arenas. */
#ifdef JEMALLOC_DSS
/*
* Protects sbrk() calls. This avoids malloc races among threads, though it
* does not protect against races with threads that call sbrk() directly.
*/
extern malloc_mutex_t dss_mtx;
/* Base address of the DSS. */
extern void *dss_base;
/* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */
extern void *dss_prev;
/* Current upper limit on DSS addresses. */
extern void *dss_max;
#endif
void *pages_map(void *addr, size_t size);
void *chunk_alloc(size_t size, bool zero);
void chunk_dealloc(void *chunk, size_t size);
bool chunk_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/

View File

@ -19,16 +19,7 @@
*/ */
#undef JEMALLOC_PREFIX #undef JEMALLOC_PREFIX
#if (defined(JEMALLOC_PREFIX) && defined(JEMALLOC_MANGLE)) #if (defined(JEMALLOC_PREFIX) && defined(JEMALLOC_MANGLE))
#undef malloc #undef JEMALLOC_P
#undef calloc
#undef posix_memalign
#undef realloc
#undef free
#undef malloc_usable_size
#undef malloc_tcache_flush
#undef malloc_stats_print
#undef malloc_options
#undef malloc_message
#endif #endif
/* /*

View File

@ -0,0 +1,41 @@
#define JEMALLOC_EXTENT_C_
#include "jemalloc_internal.h"
/******************************************************************************/
#ifdef JEMALLOC_DSS
static inline int
extent_szad_comp(extent_node_t *a, extent_node_t *b)
{
int ret;
size_t a_size = a->size;
size_t b_size = b->size;
ret = (a_size > b_size) - (a_size < b_size);
if (ret == 0) {
uintptr_t a_addr = (uintptr_t)a->addr;
uintptr_t b_addr = (uintptr_t)b->addr;
ret = (a_addr > b_addr) - (a_addr < b_addr);
}
return (ret);
}
/* Wrap red-black tree macros in functions. */
rb_wrap(, extent_tree_szad_, extent_tree_t, extent_node_t, link_szad,
extent_szad_comp)
#endif
static inline int
extent_ad_comp(extent_node_t *a, extent_node_t *b)
{
uintptr_t a_addr = (uintptr_t)a->addr;
uintptr_t b_addr = (uintptr_t)b->addr;
return ((a_addr > b_addr) - (a_addr < b_addr));
}
/* Wrap red-black tree macros in functions. */
rb_wrap(, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
extent_ad_comp)

View File

@ -0,0 +1,44 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct extent_node_s extent_node_t;
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
/* Tree of extents. */
struct extent_node_s {
#ifdef JEMALLOC_DSS
/* Linkage for the size/address-ordered tree. */
rb_node(extent_node_t) link_szad;
#endif
/* Linkage for the address-ordered tree. */
rb_node(extent_node_t) link_ad;
/* Pointer to the extent that this tree node is responsible for. */
void *addr;
/* Total region size. */
size_t size;
};
typedef rb_tree(extent_node_t) extent_tree_t;
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#ifdef JEMALLOC_DSS
rb_proto(, extent_tree_szad_, extent_tree_t, extent_node_t)
#endif
rb_proto(, extent_tree_ad_, extent_tree_t, extent_node_t)
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/

View File

@ -0,0 +1,257 @@
#define JEMALLOC_HUGE_C_
#include "jemalloc_internal.h"
/******************************************************************************/
/* Data. */
#ifdef JEMALLOC_STATS
uint64_t huge_nmalloc;
uint64_t huge_ndalloc;
size_t huge_allocated;
#endif
malloc_mutex_t huge_mtx;
/******************************************************************************/
/* Tree of chunks that are stand-alone huge allocations. */
static extent_tree_t huge;
void *
huge_malloc(size_t size, bool zero)
{
void *ret;
size_t csize;
extent_node_t *node;
/* Allocate one or more contiguous chunks for this request. */
csize = CHUNK_CEILING(size);
if (csize == 0) {
/* size is large enough to cause size_t wrap-around. */
return (NULL);
}
/* Allocate an extent node with which to track the chunk. */
node = base_node_alloc();
if (node == NULL)
return (NULL);
ret = chunk_alloc(csize, zero);
if (ret == NULL) {
base_node_dealloc(node);
return (NULL);
}
/* Insert node into huge. */
node->addr = ret;
node->size = csize;
malloc_mutex_lock(&huge_mtx);
extent_tree_ad_insert(&huge, node);
#ifdef JEMALLOC_STATS
huge_nmalloc++;
huge_allocated += csize;
#endif
malloc_mutex_unlock(&huge_mtx);
#ifdef JEMALLOC_FILL
if (zero == false) {
if (opt_junk)
memset(ret, 0xa5, csize);
else if (opt_zero)
memset(ret, 0, csize);
}
#endif
return (ret);
}
/* Only handles large allocations that require more than chunk alignment. */
void *
huge_palloc(size_t alignment, size_t size)
{
void *ret;
size_t alloc_size, chunk_size, offset;
extent_node_t *node;
/*
* This allocation requires alignment that is even larger than chunk
* alignment. This means that huge_malloc() isn't good enough.
*
* Allocate almost twice as many chunks as are demanded by the size or
* alignment, in order to assure the alignment can be achieved, then
* unmap leading and trailing chunks.
*/
assert(alignment >= chunksize);
chunk_size = CHUNK_CEILING(size);
if (size >= alignment)
alloc_size = chunk_size + alignment - chunksize;
else
alloc_size = (alignment << 1) - chunksize;
/* Allocate an extent node with which to track the chunk. */
node = base_node_alloc();
if (node == NULL)
return (NULL);
ret = chunk_alloc(alloc_size, false);
if (ret == NULL) {
base_node_dealloc(node);
return (NULL);
}
offset = (uintptr_t)ret & (alignment - 1);
assert((offset & chunksize_mask) == 0);
assert(offset < alloc_size);
if (offset == 0) {
/* Trim trailing space. */
chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
- chunk_size);
} else {
size_t trailsize;
/* Trim leading space. */
chunk_dealloc(ret, alignment - offset);
ret = (void *)((uintptr_t)ret + (alignment - offset));
trailsize = alloc_size - (alignment - offset) - chunk_size;
if (trailsize != 0) {
/* Trim trailing space. */
assert(trailsize < alloc_size);
chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
trailsize);
}
}
/* Insert node into huge. */
node->addr = ret;
node->size = chunk_size;
malloc_mutex_lock(&huge_mtx);
extent_tree_ad_insert(&huge, node);
#ifdef JEMALLOC_STATS
huge_nmalloc++;
huge_allocated += chunk_size;
#endif
malloc_mutex_unlock(&huge_mtx);
#ifdef JEMALLOC_FILL
if (opt_junk)
memset(ret, 0xa5, chunk_size);
else if (opt_zero)
memset(ret, 0, chunk_size);
#endif
return (ret);
}
void *
huge_ralloc(void *ptr, size_t size, size_t oldsize)
{
void *ret;
size_t copysize;
/* Avoid moving the allocation if the size class would not change. */
if (oldsize > arena_maxclass &&
CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
#ifdef JEMALLOC_FILL
if (opt_junk && size < oldsize) {
memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
- size);
} else if (opt_zero && size > oldsize) {
memset((void *)((uintptr_t)ptr + oldsize), 0, size
- oldsize);
}
#endif
return (ptr);
}
/*
* If we get here, then size and oldsize are different enough that we
* need to use a different size class. In that case, fall back to
* allocating new space and copying.
*/
ret = huge_malloc(size, false);
if (ret == NULL)
return (NULL);
copysize = (size < oldsize) ? size : oldsize;
memcpy(ret, ptr, copysize);
idalloc(ptr);
return (ret);
}
void
huge_dalloc(void *ptr)
{
extent_node_t *node, key;
malloc_mutex_lock(&huge_mtx);
/* Extract from tree of huge allocations. */
key.addr = ptr;
node = extent_tree_ad_search(&huge, &key);
assert(node != NULL);
assert(node->addr == ptr);
extent_tree_ad_remove(&huge, node);
#ifdef JEMALLOC_STATS
huge_ndalloc++;
huge_allocated -= node->size;
#endif
malloc_mutex_unlock(&huge_mtx);
/* Unmap chunk. */
#ifdef JEMALLOC_FILL
#ifdef JEMALLOC_DSS
if (opt_junk)
memset(node->addr, 0x5a, node->size);
#endif
#endif
chunk_dealloc(node->addr, node->size);
base_node_dealloc(node);
}
size_t
huge_salloc(const void *ptr)
{
size_t ret;
extent_node_t *node, key;
malloc_mutex_lock(&huge_mtx);
/* Extract from tree of huge allocations. */
key.addr = __DECONST(void *, ptr);
node = extent_tree_ad_search(&huge, &key);
assert(node != NULL);
ret = node->size;
malloc_mutex_unlock(&huge_mtx);
return (ret);
}
bool
huge_boot(void)
{
/* Initialize chunks data. */
if (malloc_mutex_init(&huge_mtx))
return (true);
extent_tree_ad_new(&huge);
#ifdef JEMALLOC_STATS
huge_nmalloc = 0;
huge_ndalloc = 0;
huge_allocated = 0;
#endif
return (false);
}

View File

@ -0,0 +1,34 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#ifdef JEMALLOC_STATS
/* Huge allocation statistics. */
extern uint64_t huge_nmalloc;
extern uint64_t huge_ndalloc;
extern size_t huge_allocated;
#endif
/* Protects chunk-related data structures. */
extern malloc_mutex_t huge_mtx;
void *huge_malloc(size_t size, bool zero);
void *huge_palloc(size_t alignment, size_t size);
void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
void huge_dalloc(void *ptr);
size_t huge_salloc(const void *ptr);
bool huge_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/

View File

@ -0,0 +1,419 @@
#include <sys/mman.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <errno.h>
#include <limits.h>
#ifndef SIZE_T_MAX
# define SIZE_T_MAX SIZE_MAX
#endif
#include <pthread.h>
#include <sched.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <strings.h>
#include <unistd.h>
#include <fcntl.h>
#include <pthread.h>
#define JEMALLOC_MANGLE
#include "jemalloc.h"
#ifdef JEMALLOC_LAZY_LOCK
#include <dlfcn.h>
#endif
#include "rb.h"
#if (defined(JEMALLOC_TCACHE) && defined(JEMALLOC_STATS))
#include "qr.h"
#include "ql.h"
#endif
extern void (*JEMALLOC_P(malloc_message))(const char *p1, const char *p2,
const char *p3, const char *p4);
/*
* Define a custom assert() in order to reduce the chances of deadlock during
* assertion failure.
*/
#ifdef JEMALLOC_DEBUG
# define assert(e) do { \
if (!(e)) { \
char line_buf[UMAX2S_BUFSIZE]; \
malloc_write4("<jemalloc>: ", __FILE__, ":", \
umax2s(__LINE__, 10, line_buf)); \
malloc_write4(": Failed assertion: ", "\"", #e, \
"\"\n"); \
abort(); \
} \
} while (0)
#else
#define assert(e)
#endif
/*
* jemalloc can conceptually be broken into components (arena, tcache, trace,
* etc.), but there are circular dependencies that cannot be broken without
* substantial performance degradation. In order to reduce the effect on
* visual code flow, read the header files in multiple passes, with one of the
* following cpp variables defined during each pass:
*
* JEMALLOC_H_TYPES : Preprocessor-defined constants and psuedo-opaque data
* types.
* JEMALLOC_H_STRUCTS : Data structures.
* JEMALLOC_H_EXTERNS : Extern data declarations and function prototypes.
* JEMALLOC_H_INLINES : Inline functions.
*/
/******************************************************************************/
#define JEMALLOC_H_TYPES
#ifndef __DECONST
# define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
#endif
#ifdef JEMALLOC_DEBUG
/* Disable inlining to make debugging easier. */
# define JEMALLOC_INLINE
# define inline
#else
# define JEMALLOC_ENABLE_INLINE
# define JEMALLOC_INLINE static inline
#endif
/* Size of stack-allocated buffer passed to strerror_r(). */
#define STRERROR_BUF 64
/* Minimum alignment of allocations is 2^LG_QUANTUM bytes. */
#ifdef __i386__
# define LG_QUANTUM 4
#endif
#ifdef __ia64__
# define LG_QUANTUM 4
#endif
#ifdef __alpha__
# define LG_QUANTUM 4
#endif
#ifdef __sparc__
# define LG_QUANTUM 4
#endif
#ifdef __amd64__
# define LG_QUANTUM 4
#endif
#ifdef __arm__
# define LG_QUANTUM 3
#endif
#ifdef __mips__
# define LG_QUANTUM 3
#endif
#ifdef __powerpc__
# define LG_QUANTUM 4
#endif
#ifdef __s390x__
# define LG_QUANTUM 4
#endif
#define QUANTUM ((size_t)(1U << LG_QUANTUM))
#define QUANTUM_MASK (QUANTUM - 1)
/* Return the smallest quantum multiple that is >= a. */
#define QUANTUM_CEILING(a) \
(((a) + QUANTUM_MASK) & ~QUANTUM_MASK)
#define SIZEOF_PTR (1U << LG_SIZEOF_PTR)
/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
#if (!defined(PIC) && !defined(NO_TLS))
# define NO_TLS
#endif
/*
* Maximum size of L1 cache line. This is used to avoid cache line aliasing.
* In addition, this controls the spacing of cacheline-spaced size classes.
*/
#define LG_CACHELINE 6
#define CACHELINE ((size_t)(1U << LG_CACHELINE))
#define CACHELINE_MASK (CACHELINE - 1)
/* Return the smallest cacheline multiple that is >= s. */
#define CACHELINE_CEILING(s) \
(((s) + CACHELINE_MASK) & ~CACHELINE_MASK)
/*
* Page size. STATIC_PAGE_SHIFT is determined by the configure script. If
* DYNAMIC_PAGE_SHIFT is enabled, only use the STATIC_PAGE_* macros where
* compile-time values are required for the purposes of defining data
* structures.
*/
#define STATIC_PAGE_SIZE ((size_t)(1U << STATIC_PAGE_SHIFT))
#define STATIC_PAGE_MASK ((size_t)(STATIC_PAGE_SIZE - 1))
#ifdef DYNAMIC_PAGE_SHIFT
# define PAGE_SHIFT lg_pagesize
# define PAGE_SIZE pagesize
# define PAGE_MASK pagesize_mask
#else
# define PAGE_SHIFT STATIC_PAGE_SHIFT
# define PAGE_SIZE STATIC_PAGE_SIZE
# define PAGE_MASK STATIC_PAGE_MASK
#endif
/* Return the smallest pagesize multiple that is >= s. */
#define PAGE_CEILING(s) \
(((s) + PAGE_MASK) & ~PAGE_MASK)
#include "jemalloc_stats.h"
#include "jemalloc_mutex.h"
#include "jemalloc_extent.h"
#include "jemalloc_arena.h"
#include "jemalloc_base.h"
#include "jemalloc_chunk.h"
#include "jemalloc_huge.h"
#include "jemalloc_tcache.h"
#include "jemalloc_trace.h"
#undef JEMALLOC_H_TYPES
/******************************************************************************/
#define JEMALLOC_H_STRUCTS
#include "jemalloc_stats.h"
#include "jemalloc_mutex.h"
#include "jemalloc_extent.h"
#include "jemalloc_arena.h"
#include "jemalloc_base.h"
#include "jemalloc_chunk.h"
#include "jemalloc_huge.h"
#include "jemalloc_tcache.h"
#include "jemalloc_trace.h"
#undef JEMALLOC_H_STRUCTS
/******************************************************************************/
#define JEMALLOC_H_EXTERNS
extern bool opt_abort;
#ifdef JEMALLOC_FILL
extern bool opt_junk;
#endif
#ifdef JEMALLOC_SYSV
extern bool opt_sysv;
#endif
#ifdef JEMALLOC_XMALLOC
extern bool opt_xmalloc;
#endif
#ifdef JEMALLOC_FILL
extern bool opt_zero;
#endif
#ifdef DYNAMIC_PAGE_SHIFT
extern size_t pagesize;
extern size_t pagesize_mask;
extern size_t lg_pagesize;
#endif
/* Number of CPUs. */
extern unsigned ncpus;
#ifndef NO_TLS
/*
* Map of pthread_self() --> arenas[???], used for selecting an arena to use
* for allocations.
*/
extern __thread arena_t *arenas_map JEMALLOC_ATTR(tls_model("initial-exec"));
#endif
/*
* Arenas that are used to service external requests. Not all elements of the
* arenas array are necessarily used; arenas are created lazily as needed.
*/
extern arena_t **arenas;
extern unsigned narenas;
arena_t *arenas_extend(unsigned ind);
#ifndef NO_TLS
arena_t *choose_arena_hard(void);
#endif
#include "jemalloc_stats.h"
#include "jemalloc_mutex.h"
#include "jemalloc_extent.h"
#include "jemalloc_arena.h"
#include "jemalloc_base.h"
#include "jemalloc_chunk.h"
#include "jemalloc_huge.h"
#include "jemalloc_tcache.h"
#include "jemalloc_trace.h"
#undef JEMALLOC_H_EXTERNS
/******************************************************************************/
#define JEMALLOC_H_INLINES
#include "jemalloc_stats.h"
#include "jemalloc_mutex.h"
#include "jemalloc_extent.h"
#include "jemalloc_base.h"
#include "jemalloc_chunk.h"
#include "jemalloc_huge.h"
#ifndef JEMALLOC_ENABLE_INLINE
void malloc_write4(const char *p1, const char *p2, const char *p3,
const char *p4);
arena_t *choose_arena(void);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_C_))
/*
* Wrapper around malloc_message() that avoids the need for
* JEMALLOC_P(malloc_message)(...) throughout the code.
*/
JEMALLOC_INLINE void
malloc_write4(const char *p1, const char *p2, const char *p3, const char *p4)
{
JEMALLOC_P(malloc_message)(p1, p2, p3, p4);
}
/*
* Choose an arena based on a per-thread value (fast-path code, calls slow-path
* code if necessary).
*/
JEMALLOC_INLINE arena_t *
choose_arena(void)
{
arena_t *ret;
/*
* We can only use TLS if this is a PIC library, since for the static
* library version, libc's malloc is used by TLS allocation, which
* introduces a bootstrapping issue.
*/
#ifndef NO_TLS
ret = arenas_map;
if (ret == NULL) {
ret = choose_arena_hard();
assert(ret != NULL);
}
#else
if (isthreaded && narenas > 1) {
unsigned long ind;
/*
* Hash pthread_self() to one of the arenas. There is a prime
* number of arenas, so this has a reasonable chance of
* working. Even so, the hashing can be easily thwarted by
* inconvenient pthread_self() values. Without specific
* knowledge of how pthread_self() calculates values, we can't
* easily do much better than this.
*/
ind = (unsigned long) pthread_self() % narenas;
/*
* Optimistially assume that arenas[ind] has been initialized.
* At worst, we find out that some other thread has already
* done so, after acquiring the lock in preparation. Note that
* this lazy locking also has the effect of lazily forcing
* cache coherency; without the lock acquisition, there's no
* guarantee that modification of arenas[ind] by another thread
* would be seen on this CPU for an arbitrary amount of time.
*
* In general, this approach to modifying a synchronized value
* isn't a good idea, but in this case we only ever modify the
* value once, so things work out well.
*/
ret = arenas[ind];
if (ret == NULL) {
/*
* Avoid races with another thread that may have already
* initialized arenas[ind].
*/
malloc_mutex_lock(&arenas_lock);
if (arenas[ind] == NULL)
ret = arenas_extend((unsigned)ind);
else
ret = arenas[ind];
malloc_mutex_unlock(&arenas_lock);
}
} else
ret = arenas[0];
#endif
assert(ret != NULL);
return (ret);
}
#endif
#include "jemalloc_tcache.h"
#include "jemalloc_arena.h"
#include "jemalloc_trace.h"
#ifndef JEMALLOC_ENABLE_INLINE
void *imalloc(size_t size);
void *icalloc(size_t size);
void idalloc(void *ptr);
size_t isalloc(const void *ptr);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_C_))
JEMALLOC_INLINE void *
imalloc(size_t size)
{
assert(size != 0);
if (size <= arena_maxclass)
return (arena_malloc(size, false));
else
return (huge_malloc(size, false));
}
JEMALLOC_INLINE void *
icalloc(size_t size)
{
if (size <= arena_maxclass)
return (arena_malloc(size, true));
else
return (huge_malloc(size, true));
}
JEMALLOC_INLINE void
idalloc(void *ptr)
{
arena_chunk_t *chunk;
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk != ptr)
arena_dalloc(chunk->arena, chunk, ptr);
else
huge_dalloc(ptr);
}
JEMALLOC_INLINE size_t
isalloc(const void *ptr)
{
size_t ret;
arena_chunk_t *chunk;
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk != ptr) {
/* Region. */
assert(chunk->arena->magic == ARENA_MAGIC);
ret = arena_salloc(ptr);
} else
ret = huge_salloc(ptr);
return (ret);
}
#endif
#undef JEMALLOC_H_INLINES
/******************************************************************************/

View File

@ -0,0 +1,71 @@
#define JEMALLOC_MUTEX_C_
#include "jemalloc_internal.h"
/******************************************************************************/
/* Data. */
#ifdef JEMALLOC_LAZY_LOCK
bool isthreaded = false;
#endif
#ifdef JEMALLOC_LAZY_LOCK
static void pthread_create_once(void);
#endif
/******************************************************************************/
/*
* We intercept pthread_create() calls in order to toggle isthreaded if the
* process goes multi-threaded.
*/
#ifdef JEMALLOC_LAZY_LOCK
static int (*pthread_create_fptr)(pthread_t *__restrict, const pthread_attr_t *,
void *(*)(void *), void *__restrict);
static void
pthread_create_once(void)
{
pthread_create_fptr = dlsym(RTLD_NEXT, "pthread_create");
if (pthread_create_fptr == NULL) {
malloc_write4("<jemalloc>",
": Error in dlsym(RTLD_NEXT, \"pthread_create\")\n", "",
"");
abort();
}
isthreaded = true;
}
JEMALLOC_ATTR(visibility("default"))
int
pthread_create(pthread_t *__restrict thread,
const pthread_attr_t *__restrict attr, void *(*start_routine)(void *),
void *__restrict arg)
{
static pthread_once_t once_control = PTHREAD_ONCE_INIT;
pthread_once(&once_control, pthread_create_once);
return (pthread_create_fptr(thread, attr, start_routine, arg));
}
#endif
/******************************************************************************/
bool
malloc_mutex_init(malloc_mutex_t *mutex)
{
pthread_mutexattr_t attr;
if (pthread_mutexattr_init(&attr) != 0)
return (true);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
if (pthread_mutex_init(mutex, &attr) != 0) {
pthread_mutexattr_destroy(&attr);
return (true);
}
pthread_mutexattr_destroy(&attr);
return (false);
}

View File

@ -0,0 +1,50 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef pthread_mutex_t malloc_mutex_t;
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#ifdef JEMALLOC_LAZY_LOCK
extern bool isthreaded;
#else
# define isthreaded true
#endif
bool malloc_mutex_init(malloc_mutex_t *mutex);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
void malloc_mutex_lock(malloc_mutex_t *mutex);
void malloc_mutex_unlock(malloc_mutex_t *mutex);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_MUTEX_C_))
JEMALLOC_INLINE void
malloc_mutex_lock(malloc_mutex_t *mutex)
{
if (isthreaded)
pthread_mutex_lock(mutex);
}
JEMALLOC_INLINE void
malloc_mutex_unlock(malloc_mutex_t *mutex)
{
if (isthreaded)
pthread_mutex_unlock(mutex);
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/

View File

@ -0,0 +1,248 @@
#define JEMALLOC_STATS_C_
#include "jemalloc_internal.h"
/******************************************************************************/
/* Data. */
bool opt_stats_print = false;
/******************************************************************************/
/*
* We don't want to depend on vsnprintf() for production builds, since that can
* cause unnecessary bloat for static binaries. umax2s() provides minimal
* integer printing functionality, so that malloc_printf() use can be limited to
* JEMALLOC_STATS code.
*/
char *
umax2s(uintmax_t x, unsigned base, char *s)
{
unsigned i;
i = UMAX2S_BUFSIZE - 1;
s[i] = '\0';
switch (base) {
case 10:
do {
i--;
s[i] = "0123456789"[x % 10];
x /= 10;
} while (x > 0);
break;
case 16:
do {
i--;
s[i] = "0123456789abcdef"[x & 0xf];
x >>= 4;
} while (x > 0);
break;
default:
do {
i--;
s[i] = "0123456789abcdefghijklmnopqrstuvwxyz"[x % base];
x /= base;
} while (x > 0);
}
return (&s[i]);
}
#ifdef JEMALLOC_STATS
/*
* Print to stderr in such a way as to (hopefully) avoid memory allocation.
*/
void
malloc_printf(const char *format, ...)
{
char buf[4096];
va_list ap;
va_start(ap, format);
vsnprintf(buf, sizeof(buf), format, ap);
va_end(ap);
malloc_write4(buf, "", "", "");
}
#endif
JEMALLOC_ATTR(visibility("default"))
void
JEMALLOC_P(malloc_stats_print)(const char *opts)
{
char s[UMAX2S_BUFSIZE];
bool general = true;
bool bins = true;
bool large = true;
if (opts != NULL) {
unsigned i;
for (i = 0; opts[i] != '\0'; i++) {
switch (opts[i]) {
case 'g':
general = false;
break;
case 'b':
bins = false;
break;
case 'l':
large = false;
break;
default:;
}
}
}
malloc_write4("___ Begin jemalloc statistics ___\n", "", "", "");
if (general) {
malloc_write4("Assertions ",
#ifdef NDEBUG
"disabled",
#else
"enabled",
#endif
"\n", "");
malloc_write4("Boolean JEMALLOC_OPTIONS: ",
opt_abort ? "A" : "a", "", "");
#ifdef JEMALLOC_FILL
malloc_write4(opt_junk ? "J" : "j", "", "", "");
#endif
malloc_write4("P", "", "", "");
#ifdef JEMALLOC_TCACHE
malloc_write4(opt_tcache_sort ? "S" : "s", "", "", "");
#endif
#ifdef JEMALLOC_TRACE
malloc_write4(opt_trace ? "T" : "t", "", "", "");
#endif
#ifdef JEMALLOC_SYSV
malloc_write4(opt_sysv ? "V" : "v", "", "", "");
#endif
#ifdef JEMALLOC_XMALLOC
malloc_write4(opt_xmalloc ? "X" : "x", "", "", "");
#endif
#ifdef JEMALLOC_FILL
malloc_write4(opt_zero ? "Z" : "z", "", "", "");
#endif
malloc_write4("\n", "", "", "");
malloc_write4("CPUs: ", umax2s(ncpus, 10, s), "\n", "");
malloc_write4("Max arenas: ", umax2s(narenas, 10, s), "\n", "");
malloc_write4("Pointer size: ", umax2s(sizeof(void *), 10, s),
"\n", "");
malloc_write4("Quantum size: ", umax2s(QUANTUM, 10, s), "\n",
"");
malloc_write4("Cacheline size (assumed): ",
umax2s(CACHELINE, 10, s), "\n", "");
malloc_write4("Subpage spacing: ", umax2s(SUBPAGE, 10, s),
"\n", "");
malloc_write4("Medium spacing: ", umax2s((1U << lg_mspace), 10,
s), "\n", "");
#ifdef JEMALLOC_TINY
malloc_write4("Tiny 2^n-spaced sizes: [", umax2s((1U <<
LG_TINY_MIN), 10, s), "..", "");
malloc_write4(umax2s((qspace_min >> 1), 10, s), "]\n", "", "");
#endif
malloc_write4("Quantum-spaced sizes: [", umax2s(qspace_min, 10,
s), "..", "");
malloc_write4(umax2s(qspace_max, 10, s), "]\n", "", "");
malloc_write4("Cacheline-spaced sizes: [",
umax2s(cspace_min, 10, s), "..", "");
malloc_write4(umax2s(cspace_max, 10, s), "]\n", "", "");
malloc_write4("Subpage-spaced sizes: [", umax2s(sspace_min, 10,
s), "..", "");
malloc_write4(umax2s(sspace_max, 10, s), "]\n", "", "");
malloc_write4("Medium sizes: [", umax2s(medium_min, 10, s),
"..", "");
malloc_write4(umax2s(medium_max, 10, s), "]\n", "", "");
if (opt_lg_dirty_mult >= 0) {
malloc_write4(
"Min active:dirty page ratio per arena: ",
umax2s((1U << opt_lg_dirty_mult), 10, s), ":1\n",
"");
} else {
malloc_write4(
"Min active:dirty page ratio per arena: N/A\n",
"", "", "");
}
#ifdef JEMALLOC_TCACHE
malloc_write4("Thread cache slots per size class: ",
tcache_nslots ? umax2s(tcache_nslots, 10, s) : "N/A",
"\n", "");
malloc_write4("Thread cache GC sweep interval: ",
(tcache_nslots && tcache_gc_incr > 0) ?
umax2s((1U << opt_lg_tcache_gc_sweep), 10, s) : "N/A",
"", "");
malloc_write4(" (increment interval: ",
(tcache_nslots && tcache_gc_incr > 0) ?
umax2s(tcache_gc_incr, 10, s) : "N/A",
")\n", "");
#endif
malloc_write4("Chunk size: ", umax2s(chunksize, 10, s), "", "");
malloc_write4(" (2^", umax2s(opt_lg_chunk, 10, s), ")\n", "");
}
#ifdef JEMALLOC_STATS
{
size_t allocated, mapped;
unsigned i;
arena_t *arena;
/* Calculate and print allocated/mapped stats. */
/* arenas. */
for (i = 0, allocated = 0; i < narenas; i++) {
if (arenas[i] != NULL) {
malloc_mutex_lock(&arenas[i]->lock);
allocated += arenas[i]->stats.allocated_small;
allocated += arenas[i]->stats.allocated_large;
malloc_mutex_unlock(&arenas[i]->lock);
}
}
/* huge/base. */
malloc_mutex_lock(&huge_mtx);
allocated += huge_allocated;
mapped = stats_chunks.curchunks * chunksize;
malloc_mutex_unlock(&huge_mtx);
malloc_mutex_lock(&base_mtx);
mapped += base_mapped;
malloc_mutex_unlock(&base_mtx);
malloc_printf("Allocated: %zu, mapped: %zu\n", allocated,
mapped);
/* Print chunk stats. */
{
chunk_stats_t chunks_stats;
malloc_mutex_lock(&huge_mtx);
chunks_stats = stats_chunks;
malloc_mutex_unlock(&huge_mtx);
malloc_printf("chunks: nchunks "
"highchunks curchunks\n");
malloc_printf(" %13llu%13lu%13lu\n",
chunks_stats.nchunks, chunks_stats.highchunks,
chunks_stats.curchunks);
}
/* Print chunk stats. */
malloc_printf(
"huge: nmalloc ndalloc allocated\n");
malloc_printf(" %12llu %12llu %12zu\n", huge_nmalloc,
huge_ndalloc, huge_allocated);
/* Print stats for each arena. */
for (i = 0; i < narenas; i++) {
arena = arenas[i];
if (arena != NULL) {
malloc_printf("\narenas[%u]:\n", i);
malloc_mutex_lock(&arena->lock);
arena_stats_print(arena, bins, large);
malloc_mutex_unlock(&arena->lock);
}
}
}
#endif /* #ifdef JEMALLOC_STATS */
malloc_write4("--- End jemalloc statistics ---\n", "", "", "");
}

View File

@ -0,0 +1,142 @@
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#define UMAX2S_BUFSIZE 65
#ifdef JEMALLOC_STATS
typedef struct tcache_bin_stats_s tcache_bin_stats_t;
typedef struct malloc_bin_stats_s malloc_bin_stats_t;
typedef struct malloc_large_stats_s malloc_large_stats_t;
typedef struct arena_stats_s arena_stats_t;
typedef struct chunk_stats_s chunk_stats_t;
#endif
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_STATS
#ifdef JEMALLOC_H_STRUCTS
#ifdef JEMALLOC_TCACHE
struct tcache_bin_stats_s {
/*
* Number of allocation requests that corresponded to the size of this
* bin.
*/
uint64_t nrequests;
};
#endif
struct malloc_bin_stats_s {
/*
* Number of allocation requests that corresponded to the size of this
* bin.
*/
uint64_t nrequests;
#ifdef JEMALLOC_TCACHE
/* Number of tcache fills from this bin. */
uint64_t nfills;
/* Number of tcache flushes to this bin. */
uint64_t nflushes;
#endif
/* Total number of runs created for this bin's size class. */
uint64_t nruns;
/*
* Total number of runs reused by extracting them from the runs tree for
* this bin's size class.
*/
uint64_t reruns;
/* High-water mark for this bin. */
size_t highruns;
/* Current number of runs in this bin. */
size_t curruns;
};
struct malloc_large_stats_s {
/*
* Number of allocation requests that corresponded to this size class.
*/
uint64_t nrequests;
/* High-water mark for this size class. */
size_t highruns;
/* Current number of runs of this size class. */
size_t curruns;
};
struct arena_stats_s {
/* Number of bytes currently mapped. */
size_t mapped;
/*
* Total number of purge sweeps, total number of madvise calls made,
* and total pages purged in order to keep dirty unused memory under
* control.
*/
uint64_t npurge;
uint64_t nmadvise;
uint64_t purged;
/* Per-size-category statistics. */
size_t allocated_small;
uint64_t nmalloc_small;
uint64_t ndalloc_small;
size_t allocated_medium;
uint64_t nmalloc_medium;
uint64_t ndalloc_medium;
size_t allocated_large;
uint64_t nmalloc_large;
uint64_t ndalloc_large;
/*
* One element for each possible size class, including sizes that
* overlap with bin size classes. This is necessary because ipalloc()
* sometimes has to use such large objects in order to assure proper
* alignment.
*/
malloc_large_stats_t *lstats;
};
struct chunk_stats_s {
/* Number of chunks that were allocated. */
uint64_t nchunks;
/* High-water mark for number of chunks allocated. */
unsigned long highchunks;
/*
* Current number of chunks allocated. This value isn't maintained for
* any other purpose, so keep track of it in order to be able to set
* highchunks.
*/
unsigned long curchunks;
};
#endif /* JEMALLOC_H_STRUCTS */
#endif /* JEMALLOC_STATS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern bool opt_stats_print;
char *umax2s(uintmax_t x, unsigned base, char *s);
#ifdef JEMALLOC_STATS
void malloc_printf(const char *format, ...);
#endif
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_STATS
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
#endif /* JEMALLOC_STATS */
/******************************************************************************/

View File

@ -0,0 +1,374 @@
#define JEMALLOC_TCACHE_C_
#include "jemalloc_internal.h"
#ifdef JEMALLOC_TCACHE
/******************************************************************************/
/* Data. */
size_t opt_lg_tcache_nslots = LG_TCACHE_NSLOTS_DEFAULT;
ssize_t opt_lg_tcache_gc_sweep = LG_TCACHE_GC_SWEEP_DEFAULT;
bool opt_tcache_sort = true;
/* Map of thread-specific caches. */
__thread tcache_t *tcache_tls JEMALLOC_ATTR(tls_model("initial-exec"));
/*
* Same contents as tcache, but initialized such that the TSD destructor is
* called when a thread exits, so that the cache can be cleaned up.
*/
static pthread_key_t tcache_tsd;
size_t tcache_nslots;
unsigned tcache_gc_incr;
/******************************************************************************/
/* Function prototypes for non-inline static functions. */
static void tcache_thread_cleanup(void *arg);
/******************************************************************************/
void *
tcache_alloc_hard(tcache_t *tcache, tcache_bin_t *tbin, size_t binind)
{
void *ret;
arena_tcache_fill(tcache->arena, tbin, binind);
ret = tcache_bin_alloc(tbin);
return (ret);
}
static inline void
tcache_bin_merge(void **to, void **fr, unsigned lcnt, unsigned rcnt)
{
void **l, **r;
unsigned li, ri, i;
l = fr;
r = &fr[lcnt];
li = ri = i = 0;
while (li < lcnt && ri < rcnt) {
/* High pointers come first in sorted result. */
if ((uintptr_t)l[li] > (uintptr_t)r[ri]) {
to[i] = l[li];
li++;
} else {
to[i] = r[ri];
ri++;
}
i++;
}
if (li < lcnt)
memcpy(&to[i], &l[li], sizeof(void *) * (lcnt - li));
else if (ri < rcnt)
memcpy(&to[i], &r[ri], sizeof(void *) * (rcnt - ri));
}
static inline void
tcache_bin_sort(tcache_bin_t *tbin)
{
unsigned e, i;
void **fr, **to;
void *mslots[tcache_nslots];
/*
* Perform iterative merge sort, swapping source and destination arrays
* during each iteration.
*/
fr = mslots; to = tbin->slots;
for (e = 1; e < tbin->ncached; e <<= 1) {
void **tmp = fr; fr = to; to = tmp;
for (i = 0; i + (e << 1) <= tbin->ncached; i += (e << 1))
tcache_bin_merge(&to[i], &fr[i], e, e);
if (i + e <= tbin->ncached) {
tcache_bin_merge(&to[i], &fr[i],
e, tbin->ncached - (i + e));
} else if (i < tbin->ncached)
tcache_bin_merge(&to[i], &fr[i], tbin->ncached - i, 0);
}
/* Copy the final result out of mslots, if necessary. */
if (to == mslots)
memcpy(tbin->slots, mslots, sizeof(void *) * tbin->ncached);
#ifdef JEMALLOC_DEBUG
for (i = 1; i < tbin->ncached; i++)
assert(tbin->slots[i-1] > tbin->slots[i]);
#endif
}
void
tcache_bin_flush(tcache_bin_t *tbin, size_t binind, unsigned rem)
{
arena_chunk_t *chunk;
arena_t *arena;
void *ptr;
unsigned i, ndeferred, ncached;
if (opt_tcache_sort && rem > 0) {
assert(rem < tbin->ncached);
/* Sort pointers such that the highest objects will be freed. */
tcache_bin_sort(tbin);
}
for (ndeferred = tbin->ncached - rem; ndeferred > 0;) {
ncached = ndeferred;
/* Lock the arena associated with the first object. */
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(tbin->slots[0]);
arena = chunk->arena;
malloc_mutex_lock(&arena->lock);
/* Deallocate every object that belongs to the locked arena. */
for (i = ndeferred = 0; i < ncached; i++) {
ptr = tbin->slots[i];
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk->arena == arena) {
size_t pageind = (((uintptr_t)ptr -
(uintptr_t)chunk) >> PAGE_SHIFT);
arena_chunk_map_t *mapelm =
&chunk->map[pageind];
arena_dalloc_bin(arena, chunk, ptr, mapelm);
} else {
/*
* This object was allocated via a different
* arena than the one that is currently locked.
* Stash the object, so that it can be handled
* in a future pass.
*/
tbin->slots[ndeferred] = ptr;
ndeferred++;
}
}
#ifdef JEMALLOC_STATS
arena->bins[binind].stats.nflushes++;
{
arena_bin_t *bin = &arena->bins[binind];
bin->stats.nrequests += tbin->tstats.nrequests;
if (bin->reg_size <= small_maxclass) {
arena->stats.nmalloc_small +=
tbin->tstats.nrequests;
} else {
arena->stats.nmalloc_medium +=
tbin->tstats.nrequests;
}
tbin->tstats.nrequests = 0;
}
#endif
malloc_mutex_unlock(&arena->lock);
}
if (rem > 0) {
/*
* Shift the remaining valid pointers to the base of the slots
* array.
*/
memmove(&tbin->slots[0], &tbin->slots[tbin->ncached - rem],
rem * sizeof(void *));
}
tbin->ncached = rem;
}
tcache_bin_t *
tcache_bin_create(arena_t *arena)
{
tcache_bin_t *ret;
size_t tsize;
tsize = sizeof(tcache_bin_t) + (sizeof(void *) * (tcache_nslots - 1));
if (tsize <= small_maxclass)
ret = (tcache_bin_t *)arena_malloc_small(arena, tsize, false);
else if (tsize <= bin_maxclass)
ret = (tcache_bin_t *)arena_malloc_medium(arena, tsize, false);
else
ret = (tcache_bin_t *)imalloc(tsize);
if (ret == NULL)
return (NULL);
#ifdef JEMALLOC_STATS
memset(&ret->tstats, 0, sizeof(tcache_bin_stats_t));
#endif
ret->low_water = 0;
ret->high_water = 0;
ret->ncached = 0;
return (ret);
}
void
tcache_bin_destroy(tcache_t *tcache, tcache_bin_t *tbin, unsigned binind)
{
arena_t *arena;
arena_chunk_t *chunk;
size_t pageind, tsize;
arena_chunk_map_t *mapelm;
chunk = CHUNK_ADDR2BASE(tbin);
arena = chunk->arena;
pageind = (((uintptr_t)tbin - (uintptr_t)chunk) >> PAGE_SHIFT);
mapelm = &chunk->map[pageind];
#ifdef JEMALLOC_STATS
if (tbin->tstats.nrequests != 0) {
arena_t *arena = tcache->arena;
arena_bin_t *bin = &arena->bins[binind];
malloc_mutex_lock(&arena->lock);
bin->stats.nrequests += tbin->tstats.nrequests;
if (bin->reg_size <= small_maxclass)
arena->stats.nmalloc_small += tbin->tstats.nrequests;
else
arena->stats.nmalloc_medium += tbin->tstats.nrequests;
malloc_mutex_unlock(&arena->lock);
}
#endif
assert(tbin->ncached == 0);
tsize = sizeof(tcache_bin_t) + (sizeof(void *) * (tcache_nslots - 1));
if (tsize <= bin_maxclass) {
malloc_mutex_lock(&arena->lock);
arena_dalloc_bin(arena, chunk, tbin, mapelm);
malloc_mutex_unlock(&arena->lock);
} else
idalloc(tbin);
}
tcache_t *
tcache_create(arena_t *arena)
{
tcache_t *tcache;
if (sizeof(tcache_t) + (sizeof(tcache_bin_t *) * (nbins - 1)) <=
small_maxclass) {
tcache = (tcache_t *)arena_malloc_small(arena, sizeof(tcache_t)
+ (sizeof(tcache_bin_t *) * (nbins - 1)), true);
} else if (sizeof(tcache_t) + (sizeof(tcache_bin_t *) * (nbins - 1)) <=
bin_maxclass) {
tcache = (tcache_t *)arena_malloc_medium(arena, sizeof(tcache_t)
+ (sizeof(tcache_bin_t *) * (nbins - 1)), true);
} else {
tcache = (tcache_t *)icalloc(sizeof(tcache_t) +
(sizeof(tcache_bin_t *) * (nbins - 1)));
}
if (tcache == NULL)
return (NULL);
#ifdef JEMALLOC_STATS
/* Link into list of extant tcaches. */
malloc_mutex_lock(&arena->lock);
ql_elm_new(tcache, link);
ql_tail_insert(&arena->tcache_ql, tcache, link);
malloc_mutex_unlock(&arena->lock);
#endif
tcache->arena = arena;
tcache_tls = tcache;
pthread_setspecific(tcache_tsd, tcache);
return (tcache);
}
void
tcache_destroy(tcache_t *tcache)
{
unsigned i;
#ifdef JEMALLOC_STATS
/* Unlink from list of extant tcaches. */
malloc_mutex_lock(&tcache->arena->lock);
ql_remove(&tcache->arena->tcache_ql, tcache, link);
tcache_stats_merge(tcache, tcache->arena);
malloc_mutex_unlock(&tcache->arena->lock);
#endif
for (i = 0; i < nbins; i++) {
tcache_bin_t *tbin = tcache->tbins[i];
if (tbin != NULL) {
tcache_bin_flush(tbin, i, 0);
tcache_bin_destroy(tcache, tbin, i);
}
}
if (arena_salloc(tcache) <= bin_maxclass) {
arena_chunk_t *chunk = CHUNK_ADDR2BASE(tcache);
arena_t *arena = chunk->arena;
size_t pageind = (((uintptr_t)tcache - (uintptr_t)chunk) >>
PAGE_SHIFT);
arena_chunk_map_t *mapelm = &chunk->map[pageind];
malloc_mutex_lock(&arena->lock);
arena_dalloc_bin(arena, chunk, tcache, mapelm);
malloc_mutex_unlock(&arena->lock);
} else
idalloc(tcache);
}
static void
tcache_thread_cleanup(void *arg)
{
tcache_t *tcache = (tcache_t *)arg;
assert(tcache == tcache_tls);
if (tcache != NULL) {
assert(tcache != (void *)(uintptr_t)1);
tcache_destroy(tcache);
tcache_tls = (void *)(uintptr_t)1;
}
}
#ifdef JEMALLOC_STATS
void
tcache_stats_merge(tcache_t *tcache, arena_t *arena)
{
unsigned i;
/* Merge and reset tcache stats. */
for (i = 0; i < mbin0; i++) {
arena_bin_t *bin = &arena->bins[i];
tcache_bin_t *tbin = tcache->tbins[i];
if (tbin != NULL) {
bin->stats.nrequests += tbin->tstats.nrequests;
arena->stats.nmalloc_small += tbin->tstats.nrequests;
tbin->tstats.nrequests = 0;
}
}
for (; i < nbins; i++) {
arena_bin_t *bin = &arena->bins[i];
tcache_bin_t *tbin = tcache->tbins[i];
if (tbin != NULL) {
bin->stats.nrequests += tbin->tstats.nrequests;
arena->stats.nmalloc_medium += tbin->tstats.nrequests;
tbin->tstats.nrequests = 0;
}
}
}
#endif
void
tcache_boot(void)
{
if (opt_lg_tcache_nslots > 0) {
tcache_nslots = (1U << opt_lg_tcache_nslots);
/* Compute incremental GC event threshold. */
if (opt_lg_tcache_gc_sweep >= 0) {
tcache_gc_incr = ((1U << opt_lg_tcache_gc_sweep) /
nbins) + (((1U << opt_lg_tcache_gc_sweep) % nbins ==
0) ? 0 : 1);
} else
tcache_gc_incr = 0;
} else
tcache_nslots = 0;
if (tcache_nslots != 0) {
if (pthread_key_create(&tcache_tsd, tcache_thread_cleanup) !=
0) {
malloc_write4("<jemalloc>",
": Error in pthread_key_create()\n", "", "");
abort();
}
}
}
/******************************************************************************/
#endif /* JEMALLOC_TCACHE */

View File

@ -0,0 +1,269 @@
#ifdef JEMALLOC_TCACHE
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct tcache_bin_s tcache_bin_t;
typedef struct tcache_s tcache_t;
/*
* Default number of cache slots for each bin in the thread cache (0:
* disabled).
*/
#define LG_TCACHE_NSLOTS_DEFAULT 7
/*
* (1U << opt_lg_tcache_gc_sweep) is the approximate number of allocation
* events between full GC sweeps (-1: disabled). Integer rounding may cause
* the actual number to be slightly higher, since GC is performed
* incrementally.
*/
#define LG_TCACHE_GC_SWEEP_DEFAULT 13
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct tcache_bin_s {
# ifdef JEMALLOC_STATS
tcache_bin_stats_t tstats;
# endif
unsigned low_water; /* Min # cached since last GC. */
unsigned high_water; /* Max # cached since last GC. */
unsigned ncached; /* # of cached objects. */
void *slots[1]; /* Dynamically sized. */
};
struct tcache_s {
# ifdef JEMALLOC_STATS
ql_elm(tcache_t) link; /* Used for aggregating stats. */
# endif
arena_t *arena; /* This thread's arena. */
unsigned ev_cnt; /* Event count since incremental GC. */
unsigned next_gc_bin; /* Next bin to GC. */
tcache_bin_t *tbins[1]; /* Dynamically sized. */
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern size_t opt_lg_tcache_nslots;
extern ssize_t opt_lg_tcache_gc_sweep;
extern bool opt_tcache_sort;
/* Map of thread-specific caches. */
extern __thread tcache_t *tcache_tls
JEMALLOC_ATTR(tls_model("initial-exec"));
/*
* Number of cache slots for each bin in the thread cache, or 0 if tcache is
* disabled.
*/
extern size_t tcache_nslots;
/* Number of tcache allocation/deallocation events between incremental GCs. */
extern unsigned tcache_gc_incr;
void tcache_bin_flush(tcache_bin_t *tbin, size_t binind, unsigned rem);
tcache_t *tcache_create(arena_t *arena);
void tcache_bin_destroy(tcache_t *tcache, tcache_bin_t *tbin,
unsigned binind);
void *tcache_alloc_hard(tcache_t *tcache, tcache_bin_t *tbin, size_t binind);
tcache_bin_t *tcache_bin_create(arena_t *arena);
void tcache_destroy(tcache_t *tcache);
#ifdef JEMALLOC_STATS
void tcache_stats_merge(tcache_t *tcache, arena_t *arena);
#endif
void tcache_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
void tcache_event(tcache_t *tcache);
tcache_t *tcache_get(void);
void *tcache_bin_alloc(tcache_bin_t *tbin);
void *tcache_alloc(tcache_t *tcache, size_t size, bool zero);
void tcache_dalloc(tcache_t *tcache, void *ptr);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_TCACHE_C_))
JEMALLOC_INLINE tcache_t *
tcache_get(void)
{
tcache_t *tcache;
if (isthreaded == false || tcache_nslots == 0)
return (NULL);
tcache = tcache_tls;
if ((uintptr_t)tcache <= (uintptr_t)1) {
if (tcache == NULL) {
tcache = tcache_create(choose_arena());
if (tcache == NULL)
return (NULL);
} else
return (NULL);
}
return (tcache);
}
JEMALLOC_INLINE void
tcache_event(tcache_t *tcache)
{
if (tcache_gc_incr == 0)
return;
tcache->ev_cnt++;
assert(tcache->ev_cnt <= tcache_gc_incr);
if (tcache->ev_cnt >= tcache_gc_incr) {
size_t binind = tcache->next_gc_bin;
tcache_bin_t *tbin = tcache->tbins[binind];
if (tbin != NULL) {
if (tbin->high_water == 0) {
/*
* This bin went completely unused for an
* entire GC cycle, so throw away the tbin.
*/
assert(tbin->ncached == 0);
tcache_bin_destroy(tcache, tbin, binind);
tcache->tbins[binind] = NULL;
} else {
if (tbin->low_water > 0) {
/*
* Flush (ceiling) half of the objects
* below the low water mark.
*/
tcache_bin_flush(tbin, binind,
tbin->ncached - (tbin->low_water >>
1) - (tbin->low_water & 1));
}
tbin->low_water = tbin->ncached;
tbin->high_water = tbin->ncached;
}
}
tcache->next_gc_bin++;
if (tcache->next_gc_bin == nbins)
tcache->next_gc_bin = 0;
tcache->ev_cnt = 0;
}
}
JEMALLOC_INLINE void *
tcache_bin_alloc(tcache_bin_t *tbin)
{
if (tbin->ncached == 0)
return (NULL);
tbin->ncached--;
if (tbin->ncached < tbin->low_water)
tbin->low_water = tbin->ncached;
return (tbin->slots[tbin->ncached]);
}
JEMALLOC_INLINE void *
tcache_alloc(tcache_t *tcache, size_t size, bool zero)
{
void *ret;
tcache_bin_t *tbin;
size_t binind;
if (size <= small_maxclass)
binind = small_size2bin[size];
else {
binind = mbin0 + ((MEDIUM_CEILING(size) - medium_min) >>
lg_mspace);
}
assert(binind < nbins);
tbin = tcache->tbins[binind];
if (tbin == NULL) {
tbin = tcache_bin_create(tcache->arena);
if (tbin == NULL)
return (NULL);
tcache->tbins[binind] = tbin;
}
ret = tcache_bin_alloc(tbin);
if (ret == NULL) {
ret = tcache_alloc_hard(tcache, tbin, binind);
if (ret == NULL)
return (NULL);
}
if (zero == false) {
#ifdef JEMALLOC_FILL
if (opt_junk)
memset(ret, 0xa5, size);
else if (opt_zero)
memset(ret, 0, size);
#endif
} else
memset(ret, 0, size);
#ifdef JEMALLOC_STATS
tbin->tstats.nrequests++;
#endif
tcache_event(tcache);
return (ret);
}
JEMALLOC_INLINE void
tcache_dalloc(tcache_t *tcache, void *ptr)
{
arena_t *arena;
arena_chunk_t *chunk;
arena_run_t *run;
arena_bin_t *bin;
tcache_bin_t *tbin;
size_t pageind, binind;
arena_chunk_map_t *mapelm;
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
arena = chunk->arena;
pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> PAGE_SHIFT);
mapelm = &chunk->map[pageind];
run = (arena_run_t *)((uintptr_t)chunk + (uintptr_t)((pageind -
((mapelm->bits & CHUNK_MAP_PG_MASK) >> CHUNK_MAP_PG_SHIFT)) <<
PAGE_SHIFT));
assert(run->magic == ARENA_RUN_MAGIC);
bin = run->bin;
binind = ((uintptr_t)bin - (uintptr_t)&arena->bins) /
sizeof(arena_bin_t);
assert(binind < nbins);
#ifdef JEMALLOC_FILL
if (opt_junk)
memset(ptr, 0x5a, arena->bins[binind].reg_size);
#endif
tbin = tcache->tbins[binind];
if (tbin == NULL) {
tbin = tcache_bin_create(choose_arena());
if (tbin == NULL) {
malloc_mutex_lock(&arena->lock);
arena_dalloc_bin(arena, chunk, ptr, mapelm);
malloc_mutex_unlock(&arena->lock);
return;
}
tcache->tbins[binind] = tbin;
}
if (tbin->ncached == tcache_nslots)
tcache_bin_flush(tbin, binind, (tcache_nslots >> 1));
assert(tbin->ncached < tcache_nslots);
tbin->slots[tbin->ncached] = ptr;
tbin->ncached++;
if (tbin->ncached > tbin->high_water)
tbin->high_water = tbin->ncached;
tcache_event(tcache);
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
#endif /* JEMALLOC_TCACHE */

View File

@ -0,0 +1,272 @@
#define JEMALLOC_TRACE_C_
#include "jemalloc_internal.h"
#ifdef JEMALLOC_TRACE
/******************************************************************************/
/* Data. */
bool opt_trace = false;
static malloc_mutex_t trace_mtx;
static unsigned trace_next_tid = 1;
static unsigned __thread trace_tid
JEMALLOC_ATTR(tls_model("initial-exec"));
/* Used to cause trace_cleanup() to be called. */
static pthread_key_t trace_tsd;
/******************************************************************************/
/* Function prototypes for non-inline static functions. */
static arena_t *trace_arena(const void *ptr);
static void trace_flush(arena_t *arena);
static void trace_write(arena_t *arena, const char *s);
static unsigned trace_get_tid(void);
static void trace_thread_cleanup(void *arg);
static void malloc_trace_flush_all(void);
/******************************************************************************/
static arena_t *
trace_arena(const void *ptr)
{
arena_t *arena;
arena_chunk_t *chunk;
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if ((void *)chunk == ptr)
arena = arenas[0];
else
arena = chunk->arena;
return (arena);
}
static void
trace_flush(arena_t *arena)
{
ssize_t err;
err = write(arena->trace_fd, arena->trace_buf, arena->trace_buf_end);
if (err == -1) {
malloc_write4("<jemalloc>",
": write() failed during trace flush", "\n", "");
abort();
}
arena->trace_buf_end = 0;
}
static void
trace_write(arena_t *arena, const char *s)
{
unsigned i, slen, n;
i = 0;
slen = strlen(s);
while (i < slen) {
/* Flush the trace buffer if it is full. */
if (arena->trace_buf_end == TRACE_BUF_SIZE)
trace_flush(arena);
if (arena->trace_buf_end + slen <= TRACE_BUF_SIZE) {
/* Finish writing. */
n = slen - i;
} else {
/* Write as much of s as will fit. */
n = TRACE_BUF_SIZE - arena->trace_buf_end;
}
memcpy(&arena->trace_buf[arena->trace_buf_end], &s[i], n);
arena->trace_buf_end += n;
i += n;
}
}
static unsigned
trace_get_tid(void)
{
unsigned ret = trace_tid;
if (ret == 0) {
malloc_mutex_lock(&trace_mtx);
trace_tid = trace_next_tid;
trace_next_tid++;
malloc_mutex_unlock(&trace_mtx);
ret = trace_tid;
/*
* Set trace_tsd to non-zero so that the cleanup function will
* be called upon thread exit.
*/
pthread_setspecific(trace_tsd, (void *)ret);
}
return (ret);
}
static void
malloc_trace_flush_all(void)
{
unsigned i;
for (i = 0; i < narenas; i++) {
if (arenas[i] != NULL) {
malloc_mutex_lock(&arenas[i]->lock);
trace_flush(arenas[i]);
malloc_mutex_unlock(&arenas[i]->lock);
}
}
}
void
trace_malloc(const void *ptr, size_t size)
{
char buf[UMAX2S_BUFSIZE];
arena_t *arena = trace_arena(ptr);
malloc_mutex_lock(&arena->lock);
trace_write(arena, umax2s(trace_get_tid(), 10, buf));
trace_write(arena, " m 0x");
trace_write(arena, umax2s((uintptr_t)ptr, 16, buf));
trace_write(arena, " ");
trace_write(arena, umax2s(size, 10, buf));
trace_write(arena, "\n");
malloc_mutex_unlock(&arena->lock);
}
void
trace_calloc(const void *ptr, size_t number, size_t size)
{
char buf[UMAX2S_BUFSIZE];
arena_t *arena = trace_arena(ptr);
malloc_mutex_lock(&arena->lock);
trace_write(arena, umax2s(trace_get_tid(), 10, buf));
trace_write(arena, " c 0x");
trace_write(arena, umax2s((uintptr_t)ptr, 16, buf));
trace_write(arena, " ");
trace_write(arena, umax2s(number, 10, buf));
trace_write(arena, " ");
trace_write(arena, umax2s(size, 10, buf));
trace_write(arena, "\n");
malloc_mutex_unlock(&arena->lock);
}
void
trace_posix_memalign(const void *ptr, size_t alignment, size_t size)
{
char buf[UMAX2S_BUFSIZE];
arena_t *arena = trace_arena(ptr);
malloc_mutex_lock(&arena->lock);
trace_write(arena, umax2s(trace_get_tid(), 10, buf));
trace_write(arena, " a 0x");
trace_write(arena, umax2s((uintptr_t)ptr, 16, buf));
trace_write(arena, " ");
trace_write(arena, umax2s(alignment, 10, buf));
trace_write(arena, " ");
trace_write(arena, umax2s(size, 10, buf));
trace_write(arena, "\n");
malloc_mutex_unlock(&arena->lock);
}
void
trace_realloc(const void *ptr, const void *old_ptr, size_t size,
size_t old_size)
{
char buf[UMAX2S_BUFSIZE];
arena_t *arena = trace_arena(ptr);
malloc_mutex_lock(&arena->lock);
trace_write(arena, umax2s(trace_get_tid(), 10, buf));
trace_write(arena, " r 0x");
trace_write(arena, umax2s((uintptr_t)ptr, 16, buf));
trace_write(arena, " 0x");
trace_write(arena, umax2s((uintptr_t)old_ptr, 16, buf));
trace_write(arena, " ");
trace_write(arena, umax2s(size, 10, buf));
trace_write(arena, " ");
trace_write(arena, umax2s(old_size, 10, buf));
trace_write(arena, "\n");
malloc_mutex_unlock(&arena->lock);
}
void
trace_free(const void *ptr, size_t size)
{
char buf[UMAX2S_BUFSIZE];
arena_t *arena = trace_arena(ptr);
malloc_mutex_lock(&arena->lock);
trace_write(arena, umax2s(trace_get_tid(), 10, buf));
trace_write(arena, " f 0x");
trace_write(arena, umax2s((uintptr_t)ptr, 16, buf));
trace_write(arena, " ");
trace_write(arena, umax2s(isalloc(ptr), 10, buf));
trace_write(arena, "\n");
malloc_mutex_unlock(&arena->lock);
}
void
trace_malloc_usable_size(size_t size, const void *ptr)
{
char buf[UMAX2S_BUFSIZE];
arena_t *arena = trace_arena(ptr);
malloc_mutex_lock(&arena->lock);
trace_write(arena, umax2s(trace_get_tid(), 10, buf));
trace_write(arena, " s ");
trace_write(arena, umax2s(size, 10, buf));
trace_write(arena, " 0x");
trace_write(arena, umax2s((uintptr_t)ptr, 16, buf));
trace_write(arena, "\n");
malloc_mutex_unlock(&arena->lock);
}
void
trace_thread_exit(void)
{
char buf[UMAX2S_BUFSIZE];
arena_t *arena = choose_arena();
malloc_mutex_lock(&arena->lock);
trace_write(arena, umax2s(trace_get_tid(), 10, buf));
trace_write(arena, " x\n");
malloc_mutex_unlock(&arena->lock);
}
static void
trace_thread_cleanup(void *arg)
{
trace_thread_exit();
}
void
trace_boot(void)
{
malloc_mutex_init(&trace_mtx);
/* Flush trace buffers at exit. */
atexit(malloc_trace_flush_all);
/* Receive thread exit notifications. */
if (pthread_key_create(&trace_tsd, trace_thread_cleanup) != 0) {
malloc_write4("<jemalloc>",
": Error in pthread_key_create()\n", "", "");
abort();
}
}
/******************************************************************************/
#endif /* JEMALLOC_TRACE */

View File

@ -0,0 +1,32 @@
#ifdef JEMALLOC_TRACE
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern bool opt_trace;
void trace_malloc(const void *ptr, size_t size);
void trace_calloc(const void *ptr, size_t number, size_t size);
void trace_posix_memalign(const void *ptr, size_t alignment, size_t size);
void trace_realloc(const void *ptr, const void *old_ptr, size_t size,
size_t old_size);
void trace_free(const void *ptr, size_t size);
void trace_malloc_usable_size(size_t size, const void *ptr);
void trace_thread_exit(void);
void trace_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
#endif /* JEMALLOC_TRACE */

View File

@ -646,6 +646,33 @@ struct { \
(a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_r_s); \ (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_r_s); \
} while (0) } while (0)
/*
* The rb_proto() macro generates function prototypes that correspond to the
* functions generated by an equivalently parameterized call to rb_wrap().
*/
#define rb_proto(a_attr, a_prefix, a_tree_type, a_type) \
a_attr void \
a_prefix##new(a_tree_type *tree); \
a_attr a_type * \
a_prefix##first(a_tree_type *tree); \
a_attr a_type * \
a_prefix##last(a_tree_type *tree); \
a_attr a_type * \
a_prefix##next(a_tree_type *tree, a_type *node); \
a_attr a_type * \
a_prefix##prev(a_tree_type *tree, a_type *node); \
a_attr a_type * \
a_prefix##search(a_tree_type *tree, a_type *key); \
a_attr a_type * \
a_prefix##nsearch(a_tree_type *tree, a_type *key); \
a_attr a_type * \
a_prefix##psearch(a_tree_type *tree, a_type *key); \
a_attr void \
a_prefix##insert(a_tree_type *tree, a_type *node); \
a_attr void \
a_prefix##remove(a_tree_type *tree, a_type *node);
/* /*
* The rb_wrap() macro provides a convenient way to wrap functions around the * The rb_wrap() macro provides a convenient way to wrap functions around the
* cpp macros. The main benefits of wrapping are that 1) repeated macro * cpp macros. The main benefits of wrapping are that 1) repeated macro