diff --git a/Makefile.in b/Makefile.in index 03dbbdf5..eae30653 100644 --- a/Makefile.in +++ b/Makefile.in @@ -118,6 +118,7 @@ C_SRCS := $(srcroot)src/jemalloc.c \ $(srcroot)src/extent.c \ $(srcroot)src/extent_dss.c \ $(srcroot)src/extent_mmap.c \ + $(srcroot)src/fxp.c \ $(srcroot)src/hook.c \ $(srcroot)src/hpa.c \ $(srcroot)src/hpa_central.c \ @@ -212,6 +213,7 @@ TESTS_UNIT := \ $(srcroot)test/unit/extent_quantize.c \ ${srcroot}test/unit/flat_bitmap.c \ $(srcroot)test/unit/fork.c \ + ${srcroot}test/unit/fxp.c \ $(srcroot)test/unit/hash.c \ $(srcroot)test/unit/hook.c \ $(srcroot)test/unit/hpa.c \ diff --git a/include/jemalloc/internal/fxp.h b/include/jemalloc/internal/fxp.h new file mode 100644 index 00000000..d9438090 --- /dev/null +++ b/include/jemalloc/internal/fxp.h @@ -0,0 +1,100 @@ +#ifndef JEMALLOC_INTERNAL_FXP_H +#define JEMALLOC_INTERNAL_FXP_H + +/* + * A simple fixed-point math implementation, supporting only unsigned values + * (with overflow being an error). + * + * It's not in general safe to use floating point in core code, because various + * libc implementations we get linked against can assume that malloc won't touch + * floating point state and call it with an unusual calling convention. + */ + +/* + * High 16 bits are the integer part, low 16 are the fractional part. Or + * equivalently, repr == 2**16 * val, where we use "val" to refer to the + * (imaginary) fractional representation of the true value. + * + * We pick a uint32_t here since it's convenient in some places to + * double the representation size (i.e. multiplication and division use + * 64-bit integer types), and a uint64_t is the largest type we're + * certain is available. + */ +typedef uint32_t fxp_t; +#define FXP_INIT_INT(x) ((x) << 16) + +/* + * Amount of precision used in parsing and printing numbers. The integer bound + * is simply because the integer part of the number gets 16 bits, and so is + * bounded by 65536. + * + * We use a lot of precision for the fractional part, even though most of it + * gets rounded off; this lets us get exact values for the important special + * case where the denominator is a small power of 2 (for instance, + * 1/512 == 0.001953125 is exactly representable even with only 16 bits of + * fractional precision). We need to left-shift by 16 before dividing by + * 10**precision, so we pick precision to be floor(log(2**48)) = 14. + */ +#define FXP_INTEGER_PART_DIGITS 5 +#define FXP_FRACTIONAL_PART_DIGITS 14 + +/* + * In addition to the integer and fractional parts of the number, we need to + * include a null character and (possibly) a decimal point. + */ +#define FXP_BUF_SIZE (FXP_INTEGER_PART_DIGITS + FXP_FRACTIONAL_PART_DIGITS + 2) + +static inline fxp_t +fxp_add(fxp_t a, fxp_t b) { + return a + b; +} + +static inline fxp_t +fxp_sub(fxp_t a, fxp_t b) { + assert(a >= b); + return a - b; +} + +static inline fxp_t +fxp_mul(fxp_t a, fxp_t b) { + uint64_t unshifted = (uint64_t)a * (uint64_t)b; + /* + * Unshifted is (a.val * 2**16) * (b.val * 2**16) + * == (a.val * b.val) * 2**32, but we want + * (a.val * b.val) * 2 ** 16. + */ + return (uint32_t)(unshifted >> 16); +} + +static inline fxp_t +fxp_div(fxp_t a, fxp_t b) { + assert(b != 0); + uint64_t unshifted = ((uint64_t)a << 32) / (uint64_t)b; + /* + * Unshifted is (a.val * 2**16) * (2**32) / (b.val * 2**16) + * == (a.val / b.val) * (2 ** 32), which again corresponds to a right + * shift of 16. + */ + return (uint32_t)(unshifted >> 16); +} + +static inline uint32_t +fxp_round_down(fxp_t a) { + return a >> 16; +} + +static inline uint32_t +fxp_round_nearest(fxp_t a) { + uint32_t fractional_part = (a & ((1U << 16) - 1)); + uint32_t increment = (uint32_t)(fractional_part >= (1U << 15)); + return (a >> 16) + increment; +} + +/* + * Returns true on error. Otherwise, returns false and updates *ptr to point to + * the first character not parsed (because it wasn't a digit). + */ +bool fxp_parse(fxp_t *a, const char *ptr, char **end); +void fxp_print(fxp_t a, char buf[FXP_BUF_SIZE]); + +#endif /* JEMALLOC_INTERNAL_FXP_H */ diff --git a/msvc/projects/vc2015/jemalloc/jemalloc.vcxproj b/msvc/projects/vc2015/jemalloc/jemalloc.vcxproj index 2d6b4b6e..6c4e7fdc 100644 --- a/msvc/projects/vc2015/jemalloc/jemalloc.vcxproj +++ b/msvc/projects/vc2015/jemalloc/jemalloc.vcxproj @@ -58,6 +58,7 @@ + diff --git a/msvc/projects/vc2015/jemalloc/jemalloc.vcxproj.filters b/msvc/projects/vc2015/jemalloc/jemalloc.vcxproj.filters index e3b7e0c5..84ff5748 100644 --- a/msvc/projects/vc2015/jemalloc/jemalloc.vcxproj.filters +++ b/msvc/projects/vc2015/jemalloc/jemalloc.vcxproj.filters @@ -58,6 +58,9 @@ Source Files + + Source Files + Source Files diff --git a/msvc/projects/vc2017/jemalloc/jemalloc.vcxproj b/msvc/projects/vc2017/jemalloc/jemalloc.vcxproj index 33d87a44..07fbe21e 100644 --- a/msvc/projects/vc2017/jemalloc/jemalloc.vcxproj +++ b/msvc/projects/vc2017/jemalloc/jemalloc.vcxproj @@ -58,6 +58,7 @@ + diff --git a/msvc/projects/vc2017/jemalloc/jemalloc.vcxproj.filters b/msvc/projects/vc2017/jemalloc/jemalloc.vcxproj.filters index e3b7e0c5..84ff5748 100644 --- a/msvc/projects/vc2017/jemalloc/jemalloc.vcxproj.filters +++ b/msvc/projects/vc2017/jemalloc/jemalloc.vcxproj.filters @@ -58,6 +58,9 @@ Source Files + + Source Files + Source Files diff --git a/src/fxp.c b/src/fxp.c new file mode 100644 index 00000000..96585f0a --- /dev/null +++ b/src/fxp.c @@ -0,0 +1,124 @@ +#include "jemalloc/internal/jemalloc_preamble.h" +#include "jemalloc/internal/jemalloc_internal_includes.h" + +#include "jemalloc/internal/fxp.h" + +static bool +fxp_isdigit(char c) { + return '0' <= c && c <= '9'; +} + +bool +fxp_parse(fxp_t *result, const char *str, char **end) { + /* + * Using malloc_strtoumax in this method isn't as handy as you might + * expect (I tried). In the fractional part, significant leading zeros + * mean that you still need to do your own parsing, now with trickier + * math. In the integer part, the casting (uintmax_t to uint32_t) + * forces more reasoning about bounds than just checking for overflow as + * we parse. + */ + uint32_t integer_part = 0; + + const char *cur = str; + + /* The string must start with a digit or a decimal point. */ + if (*cur != '.' && !fxp_isdigit(*cur)) { + return true; + } + + while ('0' <= *cur && *cur <= '9') { + integer_part *= 10; + integer_part += *cur - '0'; + if (integer_part >= (1U << 16)) { + return true; + } + cur++; + } + + /* + * We've parsed all digits at the beginning of the string, without + * overflow. Either we're done, or there's a fractional part. + */ + if (*cur != '.') { + *result = (integer_part << 16); + if (end != NULL) { + *end = (char *)cur; + } + return false; + } + + /* There's a fractional part. */ + cur++; + if (!fxp_isdigit(*cur)) { + /* Shouldn't end on the decimal point. */ + return true; + } + + /* + * We use a lot of precision for the fractional part, even though we'll + * discard most of it; this lets us get exact values for the important + * special case where the denominator is a small power of 2 (for + * instance, 1/512 == 0.001953125 is exactly representable even with + * only 16 bits of fractional precision). We need to left-shift by 16 + * before dividing so we pick the number of digits to be + * floor(log(2**48)) = 14. + */ + uint64_t fractional_part = 0; + uint64_t frac_div = 1; + for (int i = 0; i < FXP_FRACTIONAL_PART_DIGITS; i++) { + fractional_part *= 10; + frac_div *= 10; + if (fxp_isdigit(*cur)) { + fractional_part += *cur - '0'; + cur++; + } + } + /* + * We only parse the first maxdigits characters, but we can still ignore + * any digits after that. + */ + while (fxp_isdigit(*cur)) { + cur++; + } + + assert(fractional_part < frac_div); + uint32_t fractional_repr = (uint32_t)( + (fractional_part << 16) / frac_div); + + /* Success! */ + *result = (integer_part << 16) + fractional_repr; + if (end != NULL) { + *end = (char *)cur; + } + return false; +} + +void +fxp_print(fxp_t a, char buf[FXP_BUF_SIZE]) { + uint32_t integer_part = fxp_round_down(a); + uint32_t fractional_part = (a & ((1U << 16) - 1)); + + int leading_fraction_zeros = 0; + uint64_t fraction_digits = fractional_part; + for (int i = 0; i < FXP_FRACTIONAL_PART_DIGITS; i++) { + if (fraction_digits < (1U << 16) + && fraction_digits * 10 >= (1U << 16)) { + leading_fraction_zeros = i; + } + fraction_digits *= 10; + } + fraction_digits >>= 16; + while (fraction_digits > 0 && fraction_digits % 10 == 0) { + fraction_digits /= 10; + } + + size_t printed = malloc_snprintf(buf, FXP_BUF_SIZE, "%"FMTu32".", + integer_part); + for (int i = 0; i < leading_fraction_zeros; i++) { + buf[printed] = '0'; + printed++; + } + malloc_snprintf(&buf[printed], FXP_BUF_SIZE - printed, "%"FMTu64, + fraction_digits); +} diff --git a/test/unit/fxp.c b/test/unit/fxp.c new file mode 100644 index 00000000..89f0ca65 --- /dev/null +++ b/test/unit/fxp.c @@ -0,0 +1,344 @@ +#include "test/jemalloc_test.h" + +#include "jemalloc/internal/fxp.h" + +static double +fxp2double(fxp_t a) { + double intpart = (double)(a >> 16); + double fracpart = (double)(a & ((1U << 16) - 1)) / (1U << 16); + return intpart + fracpart; +} + +/* Is a close to b? */ +static bool +double_close(double a, double b) { + /* + * Our implementation doesn't try for precision. Correspondingly, don't + * enforce it too strenuously here; accept values that are close in + * either relative or absolute terms. + */ + return fabs(a - b) < 0.01 || fabs(a - b) / a < 0.01; +} + +static bool +fxp_close(fxp_t a, fxp_t b) { + return double_close(fxp2double(a), fxp2double(b)); +} + +static fxp_t +xparse_fxp(const char *str) { + fxp_t result; + bool err = fxp_parse(&result, str, NULL); + assert_false(err, "Invalid fxp string: %s", str); + return result; +} + +static void +expect_parse_accurate(const char *str, const char *parse_str) { + double true_val = strtod(str, NULL); + fxp_t fxp_val; + char *end; + bool err = fxp_parse(&fxp_val, parse_str, &end); + expect_false(err, "Unexpected parse failure"); + expect_ptr_eq(parse_str + strlen(str), end, + "Didn't parse whole string"); + expect_true(double_close(fxp2double(fxp_val), true_val), + "Misparsed %s", str); +} + +static void +parse_valid_trial(const char *str) { + /* The value it parses should be correct. */ + expect_parse_accurate(str, str); + char buf[100]; + snprintf(buf, sizeof(buf), "%swith_some_trailing_text", str); + expect_parse_accurate(str, buf); + snprintf(buf, sizeof(buf), "%s with a space", str); + expect_parse_accurate(str, buf); + snprintf(buf, sizeof(buf), "%s,in_a_malloc_conf_string:1", str); + expect_parse_accurate(str, buf); +} + +TEST_BEGIN(test_parse_valid) { + parse_valid_trial("0"); + parse_valid_trial("1"); + parse_valid_trial("2"); + parse_valid_trial("100"); + parse_valid_trial("345"); + parse_valid_trial("00000000123"); + parse_valid_trial("00000000987"); + + parse_valid_trial("0.0"); + parse_valid_trial("0.00000000000456456456"); + parse_valid_trial("100.00000000000456456456"); + + parse_valid_trial("123.1"); + parse_valid_trial("123.01"); + parse_valid_trial("123.001"); + parse_valid_trial("123.0001"); + parse_valid_trial("123.00001"); + parse_valid_trial("123.000001"); + parse_valid_trial("123.0000001"); + + parse_valid_trial(".0"); + parse_valid_trial(".1"); + parse_valid_trial(".01"); + parse_valid_trial(".001"); + parse_valid_trial(".0001"); + parse_valid_trial(".00001"); + parse_valid_trial(".000001"); + + parse_valid_trial(".1"); + parse_valid_trial(".10"); + parse_valid_trial(".100"); + parse_valid_trial(".1000"); + parse_valid_trial(".100000"); +} +TEST_END + +static void expect_parse_failure(const char *str) { + fxp_t result = FXP_INIT_INT(333); + char *end = (void *)0x123; + bool err = fxp_parse(&result, str, &end); + expect_true(err, "Expected a parse error on: %s", str); + expect_ptr_eq((void *)0x123, end, + "Parse error shouldn't change results"); + expect_u32_eq(result, FXP_INIT_INT(333), + "Parse error shouldn't change results"); +} + +TEST_BEGIN(test_parse_invalid) { + expect_parse_failure("123."); + expect_parse_failure("3.a"); + expect_parse_failure(".a"); + expect_parse_failure("a.1"); + expect_parse_failure("a"); + /* A valid string, but one that overflows. */ + expect_parse_failure("123456789"); + expect_parse_failure("0000000123456789"); + expect_parse_failure("1000000"); +} +TEST_END + +static void +expect_add(const char *astr, const char *bstr, const char* resultstr) { + fxp_t a = xparse_fxp(astr); + fxp_t b = xparse_fxp(bstr); + fxp_t result = xparse_fxp(resultstr); + expect_true(fxp_close(fxp_add(a, b), result), + "Expected %s + %s == %s", astr, bstr, resultstr); +} + +TEST_BEGIN(test_add_simple) { + expect_add("0", "0", "0"); + expect_add("0", "1", "1"); + expect_add("1", "1", "2"); + expect_add("1.5", "1.5", "3"); + expect_add("0.1", "0.1", "0.2"); + expect_add("123", "456", "579"); +} +TEST_END + +static void +expect_sub(const char *astr, const char *bstr, const char* resultstr) { + fxp_t a = xparse_fxp(astr); + fxp_t b = xparse_fxp(bstr); + fxp_t result = xparse_fxp(resultstr); + expect_true(fxp_close(fxp_sub(a, b), result), + "Expected %s - %s == %s", astr, bstr, resultstr); +} + +TEST_BEGIN(test_sub_simple) { + expect_sub("0", "0", "0"); + expect_sub("1", "0", "1"); + expect_sub("1", "1", "0"); + expect_sub("3.5", "1.5", "2"); + expect_sub("0.3", "0.1", "0.2"); + expect_sub("456", "123", "333"); +} +TEST_END + +static void +expect_mul(const char *astr, const char *bstr, const char* resultstr) { + fxp_t a = xparse_fxp(astr); + fxp_t b = xparse_fxp(bstr); + fxp_t result = xparse_fxp(resultstr); + expect_true(fxp_close(fxp_mul(a, b), result), + "Expected %s * %s == %s", astr, bstr, resultstr); +} + +TEST_BEGIN(test_mul_simple) { + expect_mul("0", "0", "0"); + expect_mul("1", "0", "0"); + expect_mul("1", "1", "1"); + expect_mul("1.5", "1.5", "2.25"); + expect_mul("100.0", "10", "1000"); + expect_mul(".1", "10", "1"); +} +TEST_END + +static void +expect_div(const char *astr, const char *bstr, const char* resultstr) { + fxp_t a = xparse_fxp(astr); + fxp_t b = xparse_fxp(bstr); + fxp_t result = xparse_fxp(resultstr); + expect_true(fxp_close(fxp_div(a, b), result), + "Expected %s / %s == %s", astr, bstr, resultstr); +} + +TEST_BEGIN(test_div_simple) { + expect_div("1", "1", "1"); + expect_div("0", "1", "0"); + expect_div("2", "1", "2"); + expect_div("3", "2", "1.5"); + expect_div("3", "1.5", "2"); + expect_div("10", ".1", "100"); + expect_div("123", "456", ".2697368421"); +} +TEST_END + +static void +expect_round(const char *str, uint32_t rounded_down, uint32_t rounded_nearest) { + fxp_t fxp = xparse_fxp(str); + uint32_t fxp_rounded_down = fxp_round_down(fxp); + uint32_t fxp_rounded_nearest = fxp_round_nearest(fxp); + expect_u32_eq(rounded_down, fxp_rounded_down, + "Mistake rounding %s down", str); + expect_u32_eq(rounded_nearest, fxp_rounded_nearest, + "Mistake rounding %s to nearest", str); +} + +TEST_BEGIN(test_round_simple) { + expect_round("1.5", 1, 2); + expect_round("0", 0, 0); + expect_round("0.1", 0, 0); + expect_round("0.4", 0, 0); + expect_round("0.40000", 0, 0); + expect_round("0.5", 0, 1); + expect_round("0.6", 0, 1); + expect_round("123", 123, 123); + expect_round("123.4", 123, 123); + expect_round("123.5", 123, 124); +} +TEST_END + +static void +expect_print(const char *str) { + fxp_t fxp = xparse_fxp(str); + char buf[FXP_BUF_SIZE]; + fxp_print(fxp, buf); + expect_d_eq(0, strcmp(str, buf), "Couldn't round-trip print %s", str); +} + +TEST_BEGIN(test_print_simple) { + expect_print("0.0"); + expect_print("1.0"); + expect_print("2.0"); + expect_print("123.0"); + /* + * We hit the possibility of roundoff errors whenever the fractional + * component isn't a round binary number; only check these here (we + * round-trip properly in the stress test). + */ + expect_print("1.5"); + expect_print("3.375"); + expect_print("0.25"); + expect_print("0.125"); + /* 1 / 2**14 */ + expect_print("0.00006103515625"); +} +TEST_END + +TEST_BEGIN(test_stress) { + const char *numbers[] = { + "0.0", "0.1", "0.2", "0.3", "0.4", + "0.5", "0.6", "0.7", "0.8", "0.9", + + "1.0", "1.1", "1.2", "1.3", "1.4", + "1.5", "1.6", "1.7", "1.8", "1.9", + + "2.0", "2.1", "2.2", "2.3", "2.4", + "2.5", "2.6", "2.7", "2.8", "2.9", + + "17.0", "17.1", "17.2", "17.3", "17.4", + "17.5", "17.6", "17.7", "17.8", "17.9", + + "18.0", "18.1", "18.2", "18.3", "18.4", + "18.5", "18.6", "18.7", "18.8", "18.9", + + "123.0", "123.1", "123.2", "123.3", "123.4", + "123.5", "123.6", "123.7", "123.8", "123.9", + + "124.0", "124.1", "124.2", "124.3", "124.4", + "124.5", "124.6", "124.7", "124.8", "124.9", + + "125.0", "125.1", "125.2", "125.3", "125.4", + "125.5", "125.6", "125.7", "125.8", "125.9"}; + size_t numbers_len = sizeof(numbers)/sizeof(numbers[0]); + for (size_t i = 0; i < numbers_len; i++) { + fxp_t fxp_a = xparse_fxp(numbers[i]); + double double_a = strtod(numbers[i], NULL); + + uint32_t fxp_rounded_down = fxp_round_down(fxp_a); + uint32_t fxp_rounded_nearest = fxp_round_nearest(fxp_a); + uint32_t double_rounded_down = (uint32_t)double_a; + uint32_t double_rounded_nearest = (uint32_t)round(double_a); + + expect_u32_eq(double_rounded_down, fxp_rounded_down, + "Incorrectly rounded down %s", numbers[i]); + expect_u32_eq(double_rounded_nearest, fxp_rounded_nearest, + "Incorrectly rounded-to-nearest %s", numbers[i]); + + for (size_t j = 0; j < numbers_len; j++) { + fxp_t fxp_b = xparse_fxp(numbers[j]); + double double_b = strtod(numbers[j], NULL); + + fxp_t fxp_sum = fxp_add(fxp_a, fxp_b); + double double_sum = double_a + double_b; + expect_true( + double_close(fxp2double(fxp_sum), double_sum), + "Miscomputed %s + %s", numbers[i], numbers[j]); + + if (double_a > double_b) { + fxp_t fxp_diff = fxp_sub(fxp_a, fxp_b); + double double_diff = double_a - double_b; + expect_true( + double_close(fxp2double(fxp_diff), + double_diff), + "Miscomputed %s - %s", numbers[i], + numbers[j]); + } + + fxp_t fxp_prod = fxp_mul(fxp_a, fxp_b); + double double_prod = double_a * double_b; + expect_true( + double_close(fxp2double(fxp_prod), double_prod), + "Miscomputed %s * %s", numbers[i], numbers[j]); + + if (double_b != 0.0) { + fxp_t fxp_quot = fxp_div(fxp_a, fxp_b); + double double_quot = double_a / double_b; + expect_true( + double_close(fxp2double(fxp_quot), + double_quot), + "Miscomputed %s / %s", numbers[i], + numbers[j]); + } + } + } +} +TEST_END + +int +main(void) { + return test_no_reentrancy( + test_parse_valid, + test_parse_invalid, + test_add_simple, + test_sub_simple, + test_mul_simple, + test_div_simple, + test_round_simple, + test_print_simple, + test_stress); +}