Header files are now self-contained, which makes the relationships
between the files clearer, and crucially allows LSP tools like `clangd`
to function correctly in all of our header files. I have verified that
the headers are self-contained (aside from the various Windows shims) by
compiling them as if they were C files – in a follow-up commit I plan to
add this to CI to ensure we don't regress on this front.
For the sake of consistency, function definitions and their
corresponding declarations should use the same names for parameters.
I've enabled this check in static analysis to prevent this issue from
occurring again in the future.
For better or worse, Jemalloc has a significant number of global
variables. Making all eligible global variables `static` and/or `const`
at least makes it slightly easier to reason about them, as these
qualifications communicate to the programmer restrictions on their use
without having to `grep` the whole codebase.
Previously, small allocations which were sampled as part of heap
profiling were rounded up to `SC_LARGE_MINCLASS`. This additional memory
usage becomes problematic when the page size is increased, as noted in #2358.
Small allocations are now rounded up to the nearest multiple of `PAGE`
instead, reducing the memory overhead by a factor of 4 in the most
extreme cases.
This mallctl accepts an arena_config_t structure which
can be used to customize the behavior of the arena.
Right now it contains extent_hooks and a new option,
metadata_use_hooks, which controls whether the extent
hooks are also used for metadata allocation.
The medata_use_hooks option has two main use cases:
1. In heterogeneous memory systems, to avoid metadata
being placed on potentially slower memory.
2. Avoiding virtual memory from being leaked as a result
of metadata allocation failure originating in an extent hook.
This change allows every allocator conforming to PAI communicate that it
deferred some work for the future. Without it if a background thread goes into
indefinite sleep, there is no way to notify it about upcoming deferred work.
Previously the calculation of sleep time between wakeups was implemented within
background_thread. This resulted in some parts of decay and hpa specific
logic mixing with background thread implementation. In this change, background
thread delegates this calculation to arena and it, in turn, delegates it to PAI.
The next step is to implement the actual calculation of time until deferred work
in HPA.
This saves us a cache miss when lookup up the arena bin offset in a remote
arena during tcache flush. All arenas share the base offset, and so we don't
need to look it up repeatedly for each arena. Secondarily, it shaves 288 bytes
off the arena on, e.g., x86-64.
By carefully force-inlining the division constants and the operation sum count,
we can eliminate redundant operations in the arena-level dalloc function. Do
so.
Now that we've moved junking to a higher level of the allocation stack, we don't
care about this performance optimization (which only occurred in debug modes).
This is debug only and we keep it off the fast path. Moving it here simplifies
the internal logic.
This never tries to junk on regions that were shrunk via xallocx. I think this
is fine for two reasons:
- The shrunk-with-xallocx case is rare.
- We don't always do that anyway before this diff (it depends on the opt
settings and extent hooks in effect).
Previously, tcache fill/flush (as well as small alloc/dalloc on the arena) may
potentially drop the bin lock for slab_alloc and slab_dalloc. This commit
refactors the logic so that the slab calls happen in the same function / level
as the bin lock / unlock. The main purpose is to be able to use flat combining
without having to keep track of stack state.
In the meantime, this change reduces the locking, especially for slab_dalloc
calls, where nothing happens after the call.
When deferred initialization was added, initializing required copying
sizeof(extent_hooks_t) bytes after a pointer chase. Today, it's just a single
pointer loaded from the base_t. In subsequent diffs, we'll get rid of even that.
For low arena count settings, the huge threshold feature may trigger an unwanted
bg thd creation. Given that the huge arena does eager purging by default,
bypass bg thd creation when initializing the huge arena.
This makes it possible to have multiple set of bins in an arena, which improves
arena scalability because the bins (especially the small ones) are always the
limiting factor in production workload.
A bin shard is picked on allocation; each extent tracks the bin shard id for
deallocation. The shard size will be determined using runtime options.
The global data is mostly only used at initialization, or for easy access to
values we could compute statically. Instead of consuming that space (and
risking TLB misses), we can just pass around a pointer to stack data during
bootstrapping.
This class removes almost all the dependencies on size_classes.h, accessing the
data there only via the new module sc.h, which does not depend on any
configuration options.
In a subsequent commit, we'll remove the configure-time size class computations,
doing them at boot time, instead.
The feature allows using a dedicated arena for huge allocations. We want the
addtional arena to separate huge allocation because: 1) mixing small extents
with huge ones causes fragmentation over the long run (this feature reduces VM
size significantly); 2) with many arenas, huge extents rarely get reused across
threads; and 3) huge allocations happen way less frequently, therefore no
concerns for lock contention.
The arena-associated stats are now all prefixed with arena_stats_, and live in
their own file. Likewise, malloc_bin_stats_t -> bin_stats_t, also in its own
file.
This option controls the max size when grow_retained. This is useful when we
have customized extent hooks reserving physical memory (e.g. 1G huge pages).
Without this feature, the default increasing sequence could result in fragmented
and wasted physical memory.