This reverts 13473c7c66, which was
intended to work around bootstrapping issues when linking statically.
However, this actually causes problems in various other configurations,
so this reversion may force a future fix for the underlying problem, if
it still exists.
Rather than relying on two's complement negation for alignment mask
generation, use bitwise not and addition. This dodges warnings from
MSVC, and should be strength-reduced by compiler optimization anyway.
Conditionalize use of --whole-archive on the platform plus compiler,
rather than on the ABI. This fixes a regression caused by
7b24c6e557 (Use --whole-archive when
linking integration tests on MinGW.).
This reverts 13473c7c66, which was
intended to work around bootstrapping issues when linking statically.
However, this actually causes problems in various other configurations,
so this reversion may force a future fix for the underlying problem, if
it still exists.
Prior to this change, the malloc_conf weak symbol provided by the
jemalloc dynamic library is always used, even if the application
provides a malloc_conf symbol. Use the --whole-archive linker option
to allow the weak symbol to be overridden.
Prior to this change, the malloc_conf weak symbol provided by the
jemalloc dynamic library is always used, even if the application
provides a malloc_conf symbol. Use the --whole-archive linker option
to allow the weak symbol to be overridden.
Rather than protecting dss operations with a mutex, use atomic
operations. This has negligible impact on synchronization overhead
during typical dss allocation, but is a substantial improvement for
extent_in_dss() and the newly added extent_dss_mergeable(), which can be
called multiple times during extent deallocations.
This change also has the advantage of avoiding tsd in deallocation paths
associated with purging, which resolves potential deadlocks during
thread exit due to attempted tsd resurrection.
This resolves#425.
Rather than protecting dss operations with a mutex, use atomic
operations. This has negligible impact on synchronization overhead
during typical dss allocation, but is a substantial improvement for
chunk_in_dss() and the newly added chunk_dss_mergeable(), which can be
called multiple times during chunk deallocations.
This change also has the advantage of avoiding tsd in deallocation paths
associated with purging, which resolves potential deadlocks during
thread exit due to attempted tsd resurrection.
This resolves#425.
Add spin_t and spin_{init,adaptive}(), which provide a simple
abstraction for adaptive spinning.
Adaptively spin during busy waits in bootstrapping and rtree node
initialization.
Add spin_t and spin_{init,adaptive}(), which provide a simple
abstraction for adaptive spinning.
Adaptively spin during busy waits in bootstrapping and rtree node
initialization.
Explicitly disallow junk:true and junk:free runtime settings when
running in Valgrind, since deallocation-time junk filling and redzone
validation cause false positive Valgrind reports.
This resolves#470.
Simplify decay-based purging attempts to only be triggered when the
epoch is advanced, rather than every time purgeable memory increases.
In a correctly functioning system (not previously the case; see below),
this only causes a behavior difference if during subsequent purge
attempts the least recently used (LRU) purgeable memory extent is
initially too large to be purged, but that memory is reused between
attempts and one or more of the next LRU purgeable memory extents are
small enough to be purged. In practice this is an arbitrary behavior
change that is within the set of acceptable behaviors.
As for the purging fix, assure that arena->decay.ndirty is recorded
*after* the epoch advance and associated purging occurs. Prior to this
fix, it was possible for purging during epoch advance to cause a
substantially underrepresentative (arena->ndirty - arena->decay.ndirty),
i.e. the number of dirty pages attributed to the current epoch was too
low, and a series of unintended purges could result. This fix is also
relevant in the context of the simplification described above, but the
bug's impact would be limited to over-purging at epoch advances.
Simplify decay-based purging attempts to only be triggered when the
epoch is advanced, rather than every time purgeable memory increases.
In a correctly functioning system (not previously the case; see below),
this only causes a behavior difference if during subsequent purge
attempts the least recently used (LRU) purgeable memory extent is
initially too large to be purged, but that memory is reused between
attempts and one or more of the next LRU purgeable memory extents are
small enough to be purged. In practice this is an arbitrary behavior
change that is within the set of acceptable behaviors.
As for the purging fix, assure that arena->decay.ndirty is recorded
*after* the epoch advance and associated purging occurs. Prior to this
fix, it was possible for purging during epoch advance to cause a
substantially underrepresentative (arena->ndirty - arena->decay.ndirty),
i.e. the number of dirty pages attributed to the current epoch was too
low, and a series of unintended purges could result. This fix is also
relevant in the context of the simplification described above, but the
bug's impact would be limited to over-purging at epoch advances.
Instead, move the epoch backward in time. Additionally, add
nstime_monotonic() and use it in debug builds to assert that time only
goes backward if nstime_update() is using a non-monotonic time source.
Instead, move the epoch backward in time. Additionally, add
nstime_monotonic() and use it in debug builds to assert that time only
goes backward if nstime_update() is using a non-monotonic time source.
Add missing #include <time.h>. The critical time facilities appear to
have been transitively included via unistd.h and sys/time.h, but in
principle this omission was capable of having caused
clock_gettime(CLOCK_MONOTONIC, ...) to have been overlooked in favor of
gettimeofday(), which in turn could cause spurious non-monotonic time
updates.
Refactor nstime_get() out of nstime_update() and add configure tests for
all variants.
Add CLOCK_MONOTONIC_RAW support (Linux-specific) and
mach_absolute_time() support (OS X-specific).
Do not fall back to clock_gettime(CLOCK_REALTIME, ...). This was a
fragile Linux-specific workaround, which we're unlikely to use at all
now that clock_gettime(CLOCK_MONOTONIC_RAW, ...) is supported, and if we
have no choice besides non-monotonic clocks, gettimeofday() is only
incrementally worse.
Add missing #include <time.h>. The critical time facilities appear to
have been transitively included via unistd.h and sys/time.h, but in
principle this omission was capable of having caused
clock_gettime(CLOCK_MONOTONIC, ...) to have been overlooked in favor of
gettimeofday(), which in turn could cause spurious non-monotonic time
updates.
Refactor nstime_get() out of nstime_update() and add configure tests for
all variants.
Add CLOCK_MONOTONIC_RAW support (Linux-specific) and
mach_absolute_time() support (OS X-specific).
Do not fall back to clock_gettime(CLOCK_REALTIME, ...). This was a
fragile Linux-specific workaround, which we're unlikely to use at all
now that clock_gettime(CLOCK_MONOTONIC_RAW, ...) is supported, and if we
have no choice besides non-monotonic clocks, gettimeofday() is only
incrementally worse.
Use pszind_t size classes rather than szind_t size classes, and always
reserve space for NPSIZES elements. This removes unused heaps that are
not multiples of the page size, and adds (currently) unused heaps for
all huge size classes, with the immediate benefit that the size of
arena_t allocations is constant (no longer dependent on chunk size).
These compute size classes and indices similarly to size2index(),
index2size() and s2u(), respectively, but using the subset of size
classes that are multiples of the page size. Note that pszind_t and
szind_t are not interchangeable.
Avoid calling s2u() on raw extent sizes in extent_recycle().
Clamp psz2ind() (implemented as psz2ind_clamp()) when inserting/removing
into/from size-segregated extent heaps.
This builds jemalloc and runs all checks with:
- MSVC 2015 64-bits
- MSVC 2015 32-bits
- MINGW64 (from msys2)
- MINGW32 (from msys2)
Normally, AppVeyor configs are named appveyor.yml, but it is possible to
configure the .yml file name in the AppVeyor project settings such that
the file stays "hidden", like typical travis configs.