This is no longer part of the "core" functionality; we only need the stub
implementations as an end-to-end test of hpdata + psset interactions when
metadata is being modified. Treat them accordingly.
Using an edata_t both for hugepages and the allocations within those hugepages
was convenient at first, but has outlived its usefulness. Representing
hugepages explicitly, with their own data structure, will make future
development easier.
This was promised in the review of the introduction of geom_grow, but would have
been painful to do there because of the series that introduced it. Now that
those are comitted, renaming is easier.
In previous designs, this was intended to be a sort of cache that couldn't fail.
In the current design, we want to use it just as a contention reduction
mechanism. Rewrite it with those goals in mind.
This (experimental, undocumented) functionality can be used by users to track
various statistics of interest at a finer level of granularity than the thread.
Previously all the small size classes were cached. However this has downsides
-- particularly when page size is greater than 4K (e.g. iOS), which will result
in much higher SMALL_MAXCLASS.
This change allows tcache_max to be set to lower values, to better control
resources taken by tcache.
This functions more like the serial number strategy of the ecache and
hpa_central_t. Longer-lived slabs are more likely to continue to live for
longer in the future.
This will be the centralized component of the coming hugepage allocator; the
source of larger chunks of memory from which smaller ones can be obtained.
These had no uses and complicated the API. As a rule we now expect to only use
thread-local randomization for contention-reduction reasons, so we only pay the
API costs and never get the functionality benefits.
This introduces a new sort of edata_t; a pageslab, and a set to manage them.
This is part of a series of a commits to implement a hugepage allocator; the
pageset will be per-arena, and track small page allocations requests within a
larger extent allocated from a centralized hugepage allocator.
The existing checks are good at finding such issues (on tcache flush), but not
so good at pinpointing them. Debug mode can find them, but sometimes debug mode
slows down a program so much that hard-to-hit bugs can take a long time to
crash.
This commit adds functionality to keep programs mostly on their fast paths,
while also checking every sized delete argument they get.
These simplify a lot of the bit_util module, which had grown bits and pieces of
this functionality across a variety of places over the years.
While we're here, kill off BIT_UTIL_INLINE and don't do reentrancy testing for
bit_util.
For now, this is just a stub containing the ecaches, with no surrounding code
changed. Eventually all the core allocator bits will be moved in, in the
subsequent stack of commits.
The goal of `qr_meld()` is to change the following four fields
`(a->prev, a->prev->next, b->prev, b->prev->next)` from the values
`(a->prev, a, b->prev, b)` to `(b->prev, b, a->prev, a)`.
This commit changes
```
a->prev->next = b;
b->prev->next = a;
temp = a->prev;
a->prev = b->prev;
b->prev = temp;
```
to
```
temp = a->prev;
a->prev = b->prev;
b->prev = temp;
a->prev->next = a;
b->prev->next = b;
```
The benefit is that we can use `b->prev->next` for `temp`, and so
there's no need to pass in `a_type`.
The restriction is that `b` cannot be a `qr_next()` macro, so users
of `qr_meld()` must pay attention. (Before this change, neither `a`
nor `b` could be a `qr_next()` macro.)
Previously, large allocations in tcaches would have their sizes reduced during
stats estimation. Added a test, which fails before this change but passes now.
This fixes a bug introduced in 5934846612, which
was itself fixing a bug introduced in 9c0549007d.
This lets us put more allocations on an "almost as fast" path after a flush.
This results in around a 4% reduction in malloc cycles in prod workloads
(corresponding to about a 0.1% reduction in overall cycles).
Previously, we took an array of cache_bin_info_ts and an index, and dereferenced
ourselves. But infos for other cache_bins aren't relevant to any particular
cache bin, so that should be the caller's job.