Fix tsd cleanup regressions that were introduced in
5460aa6f66 (Convert all tsd variables to
reside in a single tsd structure.). These regressions were twofold:
1) tsd_tryget() should never (and need never) return NULL. Rename it to
tsd_fetch() and simplify all callers.
2) tsd_*_set() must only be called when tsd is in the nominal state,
because cleanup happens during the nominal-->purgatory transition,
and re-initialization must not happen while in the purgatory state.
Add tsd_nominal() and use it as needed. Note that tsd_*{p,}_get()
can still be used as long as no re-initialization that would require
cleanup occurs. This means that e.g. the thread_allocated counter
can be updated unconditionally.
Implement/test/fix the opt.prof_thread_active_init,
prof.thread_active_init, and thread.prof.active mallctl's.
Test/fix the thread.prof.name mallctl.
Refactor opt_prof_active to be read-only and move mutable state into the
prof_active variable. Stop leaning on ctl-related locking for
protection.
Move small run metadata into the arena chunk header, with multiple
expected benefits:
- Lower run fragmentation due to reduced run sizes; runs are more likely
to completely drain when there are fewer total regions.
- Improved cache behavior. Prior to this change, run headers were
always page-aligned, which put extra pressure on some CPU cache sets.
The degree to which this was a problem was hardware dependent, but it
likely hurt some even for the most advanced modern hardware.
- Buffer overruns/underruns are less likely to corrupt allocator
metadata.
- Size classes between 4 KiB and 16 KiB become reasonable to support
without any special handling, and the runs are small enough that dirty
unused pages aren't a significant concern.
Fix a race that caused a non-critical assertion failure. To trigger the
race, a thread had to be part way through initializing a new sample,
such that it was discoverable by the dumping thread, but not yet linked
into its gctx by the time a later dump phase would normally have reset
its state to 'nominal'.
Additionally, lock access to the state field during modification to
transition to the dumping state. It's not apparent that this oversight
could have caused an actual problem due to outer locking that protects
the dumping machinery, but the added locking pedantically follows the
stated locking protocol for the state field.
* assertion failure
* malloc_init failure
* malloc not already initialized (in malloc_init)
* running in valgrind
* thread cache disabled at runtime
Clang and GCC already consider a comparison with NULL or -1 to be cold,
so many branches (out-of-memory) are already correctly considered as
cold and marking them is not important.
Fix a profile sampling race that was due to preparing to sample, yet
doing nothing to assure that the context remains valid until the stats
are updated.
These regressions were caused by
602c8e0971 (Implement per thread heap
profiling.), which did not make it into any releases prior to these
fixes.
Fix prof_tdata_get() to avoid dereferencing an invalid tdata pointer
(when it's PROF_TDATA_STATE_{REINCARNATED,PURGATORY}).
Fix prof_tdata_get() callers to check for invalid results besides NULL
(PROF_TDATA_STATE_{REINCARNATED,PURGATORY}).
These regressions were caused by
602c8e0971 (Implement per thread heap
profiling.), which did not make it into any releases prior to these
fixes.
This adds a new `sdallocx` function to the external API, allowing the
size to be passed by the caller. It avoids some extra reads in the
thread cache fast path. In the case where stats are enabled, this
avoids the work of calculating the size from the pointer.
An assertion validates the size that's passed in, so enabling debugging
will allow users of the API to debug cases where an incorrect size is
passed in.
The performance win for a contrived microbenchmark doing an allocation
and immediately freeing it is ~10%. It may have a different impact on a
real workload.
Closes#28
Optimize [nmd]alloc() fast paths such that the (flags == 0) case is
streamlined, flags decoding only happens to the minimum degree
necessary, and no conditionals are repeated.
__*_hook() is glibc, but on at least one glibc platform (homebrew),
the __GLIBC__ define isn't set correctly and we miss being able to
use these hooks.
Do a feature test for it during configuration so that we enable it
anywhere the hooks are actually available.
Rename data structures (prof_thr_cnt_t-->prof_tctx_t,
prof_ctx_t-->prof_gctx_t), and convert to storing a prof_tctx_t for
sampled objects.
Convert PROF_ALLOC_PREP() to prof_alloc_prep(), since precise backtrace
depth within jemalloc functions is no longer an issue (pprof prunes
irrelevant frames).
Implement mallctl's:
- prof.reset implements full sample data reset, and optional change of
sample interval.
- prof.lg_sample reads the current sample interval (opt.lg_prof_sample
was the permanent source of truth prior to prof.reset).
- thread.prof.name provides naming capability for threads within heap
profile dumps.
- thread.prof.active makes it possible to activate/deactivate heap
profiling for individual threads.
Modify the heap dump files to contain per thread heap profile data.
This change is incompatible with the existing pprof, which will require
enhancements to read and process the enriched data.
Treat prof_tdata_t's bt2cnt as a comprehensive map of the thread's
extant allocation samples (do not limit the total number of entries).
This helps prepare the way for per thread heap profiling.
Fix runs_dirty-based purging to also purge dirty pages in the spare
chunk.
Refactor runs_dirty manipulation into arena_dirty_{insert,remove}(), and
move the arena->ndirty accounting into those functions.
Remove the u.ql_link field from arena_chunk_map_t, and get rid of the
enclosing union for u.rb_link, since only rb_link remains.
Remove the ndirty field from arena_chunk_t.
Some platforms, such as Google's Portable Native Client, use Newlib and
thus lack access to madvise(2). In those instances, pages_purge() is
transformed into a no-op.
Some platforms (like those using Newlib) don't have ffs/ffsl. This
commit adds a check to configure.ac for __builtin_ffsl if ffsl isn't
found. __builtin_ffsl performs the same function as ffsl, and has the
added benefit of being available on any platform utilizing
Gcc-compatible compiler.
This change does not address the used of ffs in the MALLOCX_ARENA()
macro.
Add size class computation capability, currently used only as validation
of the size class lookup tables. Generalize the size class spacing used
for bins, for eventual use throughout the full range of allocation
sizes.
Refactor huge allocation to be managed by arenas (though the global
red-black tree of huge allocations remains for lookup during
deallocation). This is the logical conclusion of recent changes that 1)
made per arena dss precedence apply to huge allocation, and 2) made it
possible to replace the per arena chunk allocation/deallocation
functions.
Remove the top level huge stats, and replace them with per arena huge
stats.
Normalize function names and types to *dalloc* (some were *dealloc*).
Remove the --enable-mremap option. As jemalloc currently operates, this
is a performace regression for some applications, but planned work to
logarithmically space huge size classes should provide similar amortized
performance. The motivation for this change was that mremap-based huge
reallocation forced leaky abstractions that prevented refactoring.
Add new mallctl endpoints "arena<i>.chunk.alloc" and
"arena<i>.chunk.dealloc" to allow userspace to configure
jemalloc's chunk allocator and deallocator on a per-arena
basis.
Simplify backtracing to not ignore any frames, and compensate for this
in pprof in order to increase flexibility with respect to function-based
refactoring even in the presence of non-deterministic inlining. Modify
pprof to blacklist all jemalloc allocation entry points including
non-standard ones like mallocx(), and ignore all allocator-internal
frames. Prior to this change, pprof excluded the specifically
blacklisted functions from backtraces, but it left allocator-internal
frames intact.