Now that small allocation runs have fewer regions due to run metadata
residing in chunk headers, an explicit minimum tcache count is needed to
make sure that tcache adequately amortizes synchronization overhead.
Take into account large_pad when computing whether to pass the
deallocation request to tcache_dalloc_large(), so that the largest
cacheable size makes it back to tcache. This regression was introduced
by 8a03cf039c (Implement cache index
randomization for large allocations.).
Extract szad size quantization into {extent,run}_quantize(), and .
quantize szad run sizes to the union of valid small region run sizes and
large run sizes.
Refactor iteration in arena_run_first_fit() to use
run_quantize{,_first,_next(), and add support for padded large runs.
For large allocations that have no specified alignment constraints,
compute a pseudo-random offset from the beginning of the first backing
page that is a multiple of the cache line size. Under typical
configurations with 4-KiB pages and 64-byte cache lines this results in
a uniform distribution among 64 page boundary offsets.
Add the --disable-cache-oblivious option, primarily intended for
performance testing.
This resolves#13.
However, unlike before it was removed do not force --enable-ivsalloc
when Darwin zone allocator integration is enabled, since the zone
allocator code uses ivsalloc() regardless of whether
malloc_usable_size() and sallocx() do.
This resolves#211.
Add mallctls:
- arenas.lg_dirty_mult is initialized via opt.lg_dirty_mult, and can be
modified to change the initial lg_dirty_mult setting for newly created
arenas.
- arena.<i>.lg_dirty_mult controls an individual arena's dirty page
purging threshold, and synchronously triggers any purging that may be
necessary to maintain the constraint.
- arena.<i>.chunk.purge allows the per arena dirty page purging function
to be replaced.
This resolves#93.
Remove the prof_tctx_state_destroying transitory state and instead add
the tctx_uid field, so that the tuple <thr_uid, tctx_uid> uniquely
identifies a tctx. This assures that tctx's are well ordered even when
more than two with the same thr_uid coexist. A previous attempted fix
based on prof_tctx_state_destroying was only sufficient for protecting
against two coexisting tctx's, but it also introduced a new dumping
race.
These regressions were introduced by
602c8e0971 (Implement per thread heap
profiling.) and 764b00023f (Fix a heap
profiling regression.).
Add the prof_tctx_state_destroying transitionary state to fix a race
between a thread destroying a tctx and another thread creating a new
equivalent tctx.
This regression was introduced by
602c8e0971 (Implement per thread heap
profiling.).
This tends to more effectively pack active memory toward low addresses.
However, additional tree searches are required in many cases, so whether
this change stands the test of time will depend on real-world
benchmarks.
Recent changes have improved huge allocation scalability, which removes
upward pressure to set the chunk size so large that huge allocations are
rare. Smaller chunks are more likely to completely drain, so set the
default to the smallest size that doesn't leave excessive unusable
trailing space in chunk headers.
TlsGetValue has a semantic difference with pthread_getspecific, in that it
can return a non-error NULL value, so it always sets the LastError.
But allocator callers may not be expecting calling e.g. free() to change
the value of the last error, so preserve it.
Rename "dirty chunks" to "cached chunks", in order to avoid overloading
the term "dirty".
Fix the regression caused by 339c2b23b2
(Fix chunk_unmap() to propagate dirty state.), and actually address what
that change attempted, which is to only purge chunks once, and propagate
whether zeroed pages resulted into chunk_record().
Fix chunk_unmap() to propagate whether a chunk is dirty, and modify
dirty chunk purging to record this information so it can be passed to
chunk_unmap(). Since the broken version of chunk_unmap() claimed that
all chunks were clean, this resulted in potential memory corruption for
purging implementations that do not zero (e.g. MADV_FREE).
This regression was introduced by
ee41ad409a (Integrate whole chunks into
unused dirty page purging machinery.).
Extend per arena unused dirty page purging to manage unused dirty chunks
in aaddtion to unused dirty runs. Rather than immediately unmapping
deallocated chunks (or purging them in the --disable-munmap case), store
them in a separate set of trees, chunks_[sz]ad_dirty. Preferrentially
allocate dirty chunks. When excessive unused dirty pages accumulate,
purge runs and chunks in ingegrated LRU order (and unmap chunks in the
--enable-munmap case).
Refactor extent_node_t to provide accessor functions.
This regression was introduced by
88fef7ceda (Refactor huge_*() calls into
arena internals.), and went undetected because of the --enable-debug
regression.
This regression was introduced by
88fef7ceda (Refactor huge_*() calls into
arena internals.), and went undetected because of the --enable-debug
regression.
Although exceedingly unlikely, it appears that writes to the prof_tctx
field of arena_chunk_map_misc_t could be reordered such that a stale
value could be read during deallocation, with profiler metadata
corruption and invalid pointer dereferences being the most likely
effects.
Migrate all centralized data structures related to huge allocations and
recyclable chunks into arena_t, so that each arena can manage huge
allocations and recyclable virtual memory completely independently of
other arenas.
Add chunk node caching to arenas, in order to avoid contention on the
base allocator.
Use chunks_rtree to look up huge allocations rather than a red-black
tree. Maintain a per arena unsorted list of huge allocations (which
will be needed to enumerate huge allocations during arena reset).
Remove the --enable-ivsalloc option, make ivsalloc() always available,
and use it for size queries if --enable-debug is enabled. The only
practical implications to this removal are that 1) ivsalloc() is now
always available during live debugging (and the underlying radix tree is
available during core-based debugging), and 2) size query validation can
no longer be enabled independent of --enable-debug.
Remove the stats.chunks.{current,total,high} mallctls, and replace their
underlying statistics with simpler atomically updated counters used
exclusively for gdump triggering. These statistics are no longer very
useful because each arena manages chunks independently, and per arena
statistics provide similar information.
Simplify chunk synchronization code, now that base chunk allocation
cannot cause recursive lock acquisition.
Add the MALLOCX_TCACHE() and MALLOCX_TCACHE_NONE macros, which can be
used in conjunction with the *allocx() API.
Add the tcache.create, tcache.flush, and tcache.destroy mallctls.
This resolves#145.
Fix arena_get() to refresh the cache as needed in the (!init_if_missing
&& refresh_if_missing) case.
This flaw was introduced by the initial arena_get() implementation,
which was part of 8bb3198f72 (Refactor/fix
arenas manipulation.).
Recent huge allocation refactoring associates huge allocations with
arenas, but it remains necessary to quickly look up huge allocation
metadata during reallocation/deallocation. A global radix tree remains
a good solution to this problem, but locking would have become the
primary bottleneck after (upcoming) migration of chunk management from
global to per arena data structures.
This lock-free implementation uses double-checked reads to traverse the
tree, so that in the steady state, each read or write requires only a
single atomic operation.
This implementation also assures that no more than two tree levels
actually exist, through a combination of careful virtual memory
allocation which makes large sparse nodes cheap, and skipping the root
node on x64 (possible because the top 16 bits are all 0 in practice).
Refactor base_alloc() to guarantee that allocations are carved from
demand-zeroed virtual memory. This supports sparse data structures such
as multi-page radix tree nodes.
Enhance base_alloc() to keep track of fragments which were too small to
support previous allocation requests, and try to consume them during
subsequent requests. This becomes important when request sizes commonly
approach or exceed the chunk size (as could radix tree node
allocations).
This feature makes it possible to toggle the gdump feature on/off during
program execution, whereas the the opt.prof_dump mallctl value can only
be set during program startup.
This resolves#72.
There are three categories of metadata:
- Base allocations are used for bootstrap-sensitive internal allocator
data structures.
- Arena chunk headers comprise pages which track the states of the
non-metadata pages.
- Internal allocations differ from application-originated allocations
in that they are for internal use, and that they are omitted from heap
profiles.
The metadata statistics comprise the metadata categories as follows:
- stats.metadata: All metadata -- base + arena chunk headers + internal
allocations.
- stats.arenas.<i>.metadata.mapped: Arena chunk headers.
- stats.arenas.<i>.metadata.allocated: Internal allocations. This is
reported separately from the other metadata statistics because it
overlaps with the allocated and active statistics, whereas the other
metadata statistics do not.
Base allocations are not reported separately, though their magnitude can
be computed by subtracting the arena-specific metadata.
This resolves#163.
Refactor bootstrapping to delay tsd initialization, primarily to support
integration with FreeBSD's libc.
Refactor a0*() for internal-only use, and add the
bootstrap_{malloc,calloc,free}() API for use by FreeBSD's libc. This
separation limits use of the a0*() functions to metadata allocation,
which doesn't require malloc/calloc/free API compatibility.
This resolves#170.
In addition to true/false, opt.junk can now be either "alloc" or "free",
giving applications the possibility of junking memory only on allocation
or deallocation.
This resolves#172.