Reduce rtree memory usage by storing booleans (1 byte each) rather than
pointers. The rtree code is only used to record whether jemalloc manages
a chunk of memory, so there's no need to store pointers in the rtree.
Increase rtree node size to 64 KiB in order to reduce tree depth from 13
to 3 on 64-bit systems. The conversion to more compact leaf nodes was
enough by itself to make the rtree depth 1 on 32-bit systems; due to the
fact that root nodes are smaller than the specified node size if
possible, the node size change has no impact on 32-bit systems (assuming
default chunk size).
Verify that freed regions are quarantined, and that redzone corruption
is detected.
Introduce a testing idiom for intercepting/replacing internal functions.
In this case the replaced function is ordinarily a static function, but
the idiom should work similarly for library-private functions.
Don't junk fill reallocations for which the request size is less than
the current usable size, but not enough smaller to cause a size class
change. Unlike malloc()/calloc()/realloc(), *allocx() contractually
treats the full usize as the allocation, so a caller can ask for zeroed
memory via mallocx() and a series of rallocx() calls that all specify
MALLOCX_ZERO, and be assured that all newly allocated bytes will be
zeroed and made available to the application without danger of allocator
mutation until the size class decreases enough to cause usize reduction.
Refactor such that arena_prof_ctx_set() receives usize as an argument,
and use it to determine whether to handle ptr as a small region, rather
than reading the chunk page map.
Implement the *allocx() API, which is a successor to the *allocm() API.
The *allocx() functions are slightly simpler to use because they have
fewer parameters, they directly return the results of primary interest,
and mallocx()/rallocx() avoid the strict aliasing pitfall that
allocm()/rallocx() share with posix_memalign(). The following code
violates strict aliasing rules:
foo_t *foo;
allocm((void **)&foo, NULL, 42, 0);
whereas the following is safe:
foo_t *foo;
void *p;
allocm(&p, NULL, 42, 0);
foo = (foo_t *)p;
mallocx() does not have this problem:
foo_t *foo = (foo_t *)mallocx(42, 0);
Add mtx (mutex) to test infrastructure, in order to avoid bootstrapping
complications that would result from directly using malloc_mutex.
Rename test infrastructure's thread abstraction from je_thread to thd.
Fix some header ordering issues.
Add JEMALLOC_INLINE_C and use it instead of JEMALLOC_INLINE in .c files,
so that the annotated functions are always static.
Remove SFMT's inline-related macros and use jemalloc's instead, so that
there's no danger of interactions with jemalloc's definitions that
disable inlining for debug builds.
Add probabability distribution utility code that enables generation of
random deviates drawn from normal, Chi-square, and Gamma distributions.
Fix format strings in several of the assert_* macros (remove a %s).
Clean up header issues; it's critical that system headers are not
included after internal definitions potentially do things like:
#define inline
Fix the build system to incorporate header dependencies for the test
library C files.
Refactor tests to use explicit testing assertions, rather than diff'ing
test output. This makes the test code a bit shorter, more explicitly
encodes testing intent, and makes test failure diagnosis more
straightforward.
Unless heap profiling is enabled, disable floating point code and don't
link with libm. This, in combination with e.g. EXTRA_CFLAGS=-mno-sse on
x64 systems, makes it possible to completely disable floating point
register use. Some versions of glibc neglect to save/restore
caller-saved floating point registers during dynamic lazy symbol
loading, and the symbol loading code uses whatever malloc the
application happens to have linked/loaded with, the result being
potential floating point register corruption.
Refactor the test harness to support three types of tests:
- unit: White box unit tests. These tests have full access to all
internal jemalloc library symbols. Though in actuality all symbols
are prefixed by jet_, macro-based name mangling abstracts this away
from test code.
- integration: Black box integration tests. These tests link with
the installable shared jemalloc library, and with the exception of
some utility code and configure-generated macro definitions, they have
no access to jemalloc internals.
- stress: Black box stress tests. These tests link with the installable
shared jemalloc library, as well as with an internal allocator with
symbols prefixed by jet_ (same as for unit tests) that can be used to
allocate data structures that are internal to the test code.
Move existing tests into test/{unit,integration}/ as appropriate.
Split out internal parts of jemalloc_defs.h.in and put them in
jemalloc_internal_defs.h.in. This reduces internals exposure to
applications that #include <jemalloc/jemalloc.h>.
Refactor jemalloc.h header generation so that a single header file
results, and the prototypes can be used to generate jet_ prototypes for
tests. Split jemalloc.h.in into multiple parts (jemalloc_defs.h.in,
jemalloc_macros.h.in, jemalloc_protos.h.in, jemalloc_mangle.h.in) and
use a shell script to generate a unified jemalloc.h at configure time.
Change the default private namespace prefix from "" to "je_".
Add missing private namespace mangling.
Remove hard-coded private_namespace.h. Instead generate it and
private_unnamespace.h from private_symbols.txt. Use similar logic for
public symbols, which aids in name mangling for jet_ symbols.
Add test_warn() and test_fail(). Replace existing exit(1) calls with
test_fail() calls.
When using LinuxThreads pthread_setspecific triggers recursive
allocation on all threads. Work around this by creating a global linked
list of in-progress tsd initializations.
This modifies the _tsd_get_wrapper macro-generated function. When it has
to initialize an TSD object it will push the item to the linked list
first. If this causes a recursive allocation then the _get_wrapper
request is satisfied from the list. When pthread_setspecific returns the
item is removed from the list.
This effectively adds a very poor substitute for real TLS used only
during pthread_setspecific allocation recursion.
Signed-off-by: Crestez Dan Leonard <lcrestez@ixiacom.com>
Fix a Valgrind integration flaw that caused Valgrind warnings about
reads of uninitialized memory in internal zero-initialized data
structures (relevant to tcache and prof code).
Add the JEMALLOC_ALWAYS_INLINE_C macro and use it for always-inlined
functions declared in .c files. This fixes a function attribute
inconsistency for debug builds that resulted in (harmless) compiler
warnings about functions not being inlinable.
Reported by Ricardo Nabinger Sanchez.
Add no-op bodies to VALGRIND_*() macro stubs so that they can be used in
contexts like the following without generating a compiler warning about
the 'if' statement having an empty body:
if (config_valgrind)
VALGRIND_MAKE_MEM_UNDEFINED(ret, size);
Checking for __s390x__ means you work on s390x, but not s390 (32bit)
systems. So use __s390__ which works for both.
With this, `make check` passes on s390.
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Avoid writing to uninitialized TLS as a side effect of deallocation.
Initializing TLS during deallocation is unsafe because it is possible
that a thread never did any allocation, and that TLS has already been
deallocated by the threads library, resulting in write-after-free
corruption. These fixes affect prof_tdata and quarantine; all other
uses of TLS are already safe, whether intentionally (as for tcache) or
unintentionally (as for arenas).
Update hash from MurmurHash2 to MurmurHash3, primarily because the
latter generates 128 bits in a single call for no extra cost, which
simplifies integration with cuckoo hashing.
Tighten valgrind integration such that immediately after memory is
validated or zeroed, valgrind is told to forget the memory's 'defined'
state. The only place newly allocated memory should be left marked as
'defined' is in the public functions (e.g. calloc() and realloc()).
Purge unused dirty pages in an order that first performs clean/dirty run
defragmentation, in order to mitigate available run fragmentation.
Remove the limitation that prevented purging unless at least one chunk
worth of dirty pages had accumulated in an arena. This limitation was
intended to avoid excessive purging for small applications, but the
threshold was arbitrary, and the effect of questionable utility.
Relax opt_lg_dirty_mult from 5 to 3. This compensates for increased
likelihood of allocating clean runs, given the same ratio of clean:dirty
runs, and reduces the potential for repeated purging in pathological
large malloc/free loops that push the active:dirty page ratio just over
the purge threshold.
Add the "arenas.extend" mallctl, so that it is possible to create new
arenas that are outside the set that jemalloc automatically multiplexes
threads onto.
Add the ALLOCM_ARENA() flag for {,r,d}allocm(), so that it is possible
to explicitly allocate from a particular arena.
Add the "opt.dss" mallctl, which controls the default precedence of dss
allocation relative to mmap allocation.
Add the "arena.<i>.dss" mallctl, which makes it possible to set the
default dss precedence on a per arena or global basis.
Add the "arena.<i>.purge" mallctl, which obsoletes "arenas.purge".
Add the "stats.arenas.<i>.dss" mallctl.
Add a library constructor for jemalloc that initializes the allocator.
This fixes a race that could occur if threads were created by the main
thread prior to any memory allocation, followed by fork(2), and then
memory allocation in the child process.
Fix the prefork/postfork functions to acquire/release the ctl, prof, and
rtree mutexes. This fixes various fork() child process deadlocks, but
one possible deadlock remains (intentionally) unaddressed: prof
backtracing can acquire runtime library mutexes, so deadlock is still
possible if heap profiling is enabled during fork(). This deadlock is
known to be a real issue in at least the case of libgcc-based
backtracing.
Reported by tfengjun.
mlockall(2) can cause purging via madvise(2) to fail. Fix purging code
to check whether madvise() succeeded, and base zeroed page metadata on
the result.
Reported by Olivier Lecomte.
Refactor code such that arena_mapbits_{large,small}_set() always
preserves the unzeroed flag, and manually manipulate the unzeroed flag
in the one case where it actually gets reset (in arena_chunk_purge()).
This fixes unzeroed preservation bugs in arena_run_split() and
arena_ralloc_large_grow(). These bugs caused large calloc() to return
non-zeroed memory under some circumstances.
Add the --enable-mremap option, and disable the use of mremap(2) by
default, for the same reason that freeing chunks via munmap(2) is
disabled by default on Linux: semi-permanent VM map fragmentation.
Further optimize arena_salloc() to only look at the binind chunk map
bits in the common case.
Add more sanity checks to arena_salloc() that detect chunk map
inconsistencies for large allocations (whether due to allocator bugs or
application bugs).
Embed the bin index for small page runs into the chunk page map, in
order to omit [...] in the following dependent load sequence:
ptr-->mapelm-->[run-->bin-->]bin_info
Move various non-critcal code out of the inlined function chain into
helper functions (tcache_event_hard(), arena_dalloc_small(), and
locking).
Theses newly added macros will be used to implement the equivalent under
MSVC. Also, move the definitions to headers, where they make more sense,
and for some, are even more useful there (e.g. malloc).
- Use the extensions autoconf finds for object and executable files.
- Remove the sorev variable, and replace SOREV definition with sorev's.
- Default to je_ prefix on win32.
Using errno on win32 doesn't quite work, because the value set in a shared
library can't be read from e.g. an executable calling the function setting
errno.
At the same time, since buferror always uses errno/GetLastError, don't pass
it.
MSVC doesn't support C99, and building as C++ to be able to use them is
dangerous, as C++ and C99 are incompatible.
Introduce a VARIABLE_ARRAY macro that either uses VLA when supported,
or alloca() otherwise. Note that using alloca() inside loops doesn't
quite work like VLAs, thus the use of VARIABLE_ARRAY there is discouraged.
It might be worth investigating ways to check whether VARIABLE_ARRAY is
used in such context at runtime in debug builds and bail out if that
happens.
MSVC doesn't support C99, and as such doesn't support designated
initialization of structs and unions. As there is never a mix of
indexed and named nodes, it is pretty straightforward to use a
different type for each.
Fix a potential deadlock that could occur during interval- and
growth-triggered heap profile dumps.
Fix an off-by-one heap profile statistics bug that could be observed in
interval- and growth-triggered heap profiles.
Fix heap profile dump filename sequence numbers (regression during
conversion to malloc_snprintf()).
Remove mmap_unaligned, which was used to heuristically decide whether to
optimistically call mmap() in such a way that could reduce the total
number of system calls. If I remember correctly, the intention of
mmap_unaligned was to avoid always executing the slow path in the
presence of ASLR. However, that reasoning seems to have been based on a
flawed understanding of how ASLR actually works. Although ASLR
apparently causes mmap() to ignore address requests, it does not cause
total placement randomness, so there is a reasonable expectation that
iterative mmap() calls will start returning chunk-aligned mappings once
the first chunk has been properly aligned.
Fix chunk_alloc_dss() to zero memory when requested.
Fix chunk_dealloc() to avoid chunk_dealloc_mmap() for dss-allocated
memory.
Fix huge_palloc() to always junk fill when requested.
Improve chunk_recycle() to report that memory is zeroed as a side effect
of pages_purge().
Fix a memory corruption bug in chunk_alloc_dss() that was due to
claiming newly allocated memory is zeroed.
Reverse order of preference between mmap() and sbrk() to prefer mmap().
Clean up management of 'zero' parameter in chunk_alloc*().
Using static memory when malloc_tsd_malloc fails means all threads share
the same wrapper and thus the same wrapped value. This defeats the purpose
of TSD.
Not setting the initialized member leads to randomly calling the cleanup
function in cases it shouldn't be called (and isn't called in other
implementations).
Change the "opt.lg_prof_sample" default from 0 to 19 (1 B to 512 KiB).
Change the "opt.prof_accum" default from true to false.
Add the "opt.prof_final" mallctl, so that "opt.prof_prefix" need not be
abused to disable final profile dumping.
Add a configure test to determine whether common mmap()/munmap()
patterns cause VM map holes, and only use munmap() to discard unused
chunks if the problem does not exist.
Unify the chunk caching for mmap and dss.
Fix options processing to limit lg_chunk to be large enough that
redzones will always fit.
Normalize arena_palloc(), chunk_alloc_mmap_slow(), and
chunk_recycle_dss() to use the same algorithm for trimming
over-allocation.
Add the ALIGNMENT_ADDR2BASE(), ALIGNMENT_ADDR2OFFSET(), and
ALIGNMENT_CEILING() macros, and use them where appropriate.
Remove the run_size_p parameter from sa2u().
Fix a potential deadlock in chunk_recycle_dss() that was introduced by
eae269036c (Add alignment support to
chunk_alloc()).
Implement Valgrind support, as well as the redzone and quarantine
features, which help Valgrind detect memory errors. Redzones are only
implemented for small objects because the changes necessary to support
redzones around large and huge objects are complicated by in-place
reallocation, to the point that it isn't clear that the maintenance
burden is worth the incremental improvement to Valgrind support.
Merge arena_salloc() and arena_salloc_demote().
Refactor i[v]salloc() to expose the 'demote' option.
Use $((...)) for math in size_classes.h rather than expr, because it is
much faster. This is not supported syntax in the classic Bourne shell,
but all modern sh implementations support it, including bash, zsh, and
ash.
s/PAGE_SHIFT/LG_PAGE/g and s/PAGE_SIZE/PAGE/g.
Remove remnants of the dynamic-page-shift code.
Rename the "arenas.pagesize" mallctl to "arenas.page".
Remove the "arenas.chunksize" mallctl, which is redundant with
"opt.lg_chunk".
This reverts commit 96d4120ac0.
ivsalloc() depends on chunks_rtree being initialized. This can be
worked around via a NULL pointer check. However,
thread_allocated_tsd_get() also depends on initialization having
occurred, and there is no way to guard its call in free() that is
cheaper than checking whether ptr is NULL.
Generalize isalloc() to handle NULL pointers in such a way that the NULL
checking overhead is only paid when introspecting huge allocations (or
NULL). This allows free() and malloc_usable_size() to no longer check
for NULL.
Submitted by Igor Bukanov and Mike Hommey.
Remove code that validates malloc_vsnprintf() and malloc_strtoumax()
against their namesakes. The validation code has adequately served its
usefulness at this point, and it isn't worth dealing with the different
formatting for %p with glibc versus other implementations for NULL
pointers ("(nil)" vs. "0x0").
Reported by Mike Hommey.
glibc uses memalign()/free() to allocate/deallocate TLS, which means
that it is unsafe to set TLS variables as a side effect of free() --
they may already be deallocated. Work around this by avoiding
tcache_create() within free().
Reported by Mike Hommey.