The C11 atomics backport removed this #define, which degraded atomic 64-bit
reads to require a lock even on platforms that support them. This commit fixes
that.
This introduces a backport of C11 atomics. It has four implementations; ranked
in order of preference, they are:
- GCC/Clang __atomic builtins
- GCC/Clang __sync builtins
- MSVC _Interlocked builtins
- C11 atomics, from <stdatomic.h>
The primary advantages are:
- Close adherence to the standard API gives us a defined memory model.
- Type safety: atomic objects are now separate types from non-atomic ones, so
that it's impossible to mix up atomic and non-atomic updates (which is
undefined behavior that compilers are starting to take advantage of).
- Efficiency: we can specify ordering for operations, avoiding fences and
atomic operations on strongly ordered architectures (example:
`atomic_write_u32(ptr, val);` involves a CAS loop, whereas
`atomic_store(ptr, val, ATOMIC_RELEASE);` is a plain store.
This diff leaves in the current atomics API (implementing them in terms of the
backport). This lets us transition uses over piecemeal.
Testing:
This is by nature hard to test. I've manually tested the first three options on
Linux on gcc by futzing with the #defines manually, on freebsd with gcc and
clang, on MSVC, and on OS X with clang. All of these were x86 machines though,
and we don't have any test infrastructure set up for non-x86 platforms.
This is part of a broader change to make header files better represent the
dependencies between one another (see
https://github.com/jemalloc/jemalloc/issues/533). It breaks up component headers
into smaller parts that can be made to have a simpler dependency graph.
For the autogenerated headers (smoothstep.h and size_classes.h), no splitting
was necessary, so I didn't add support to emit multiple headers.
Refactor the arenas array, which contains pointers to all extant arenas,
such that it starts out as a sparse array of maximum size, and use
double-checked atomics-based reads as the basis for fast and simple
arena_get(). Additionally, reduce arenas_lock's role such that it only
protects against arena initalization races. These changes remove the
possibility for arena lookups to trigger locking, which resolves at
least one known (fork-related) deadlock.
This resolves#315.
Migrate all centralized data structures related to huge allocations and
recyclable chunks into arena_t, so that each arena can manage huge
allocations and recyclable virtual memory completely independently of
other arenas.
Add chunk node caching to arenas, in order to avoid contention on the
base allocator.
Use chunks_rtree to look up huge allocations rather than a red-black
tree. Maintain a per arena unsorted list of huge allocations (which
will be needed to enumerate huge allocations during arena reset).
Remove the --enable-ivsalloc option, make ivsalloc() always available,
and use it for size queries if --enable-debug is enabled. The only
practical implications to this removal are that 1) ivsalloc() is now
always available during live debugging (and the underlying radix tree is
available during core-based debugging), and 2) size query validation can
no longer be enabled independent of --enable-debug.
Remove the stats.chunks.{current,total,high} mallctls, and replace their
underlying statistics with simpler atomically updated counters used
exclusively for gdump triggering. These statistics are no longer very
useful because each arena manages chunks independently, and per arena
statistics provide similar information.
Simplify chunk synchronization code, now that base chunk allocation
cannot cause recursive lock acquisition.
These functions may be available as inlines or as libgcc functions. In the
former case, a __GCC_HAVE_SYNC_COMPARE_AND_SWAP_n macro is defined. But we
still want to use these functions in the latter case, when we don't have
our own implementation.
Remove ephemeral mutexes from the prof machinery, and remove
malloc_mutex_destroy(). This simplifies mutex management on systems
that call malloc()/free() inside pthread_mutex_{create,destroy}().
Add atomic_*_u() for operation on unsigned values.
Fix prof_printf() to call malloc_vsnprintf() rather than
malloc_snprintf().
Program-generate small size class tables for all valid combinations of
LG_TINY_MIN, LG_QUANTUM, and PAGE_SHIFT. Use the appropriate table to generate
all relevant data structures, and remove the distinction between
tiny/quantum/cacheline/subpage bins.
Remove --enable-dynamic-page-shift. This option didn't prove useful in
practice, and it prevented optimizations.
Add Tilera architecture support.