Rather than protecting dss operations with a mutex, use atomic
operations. This has negligible impact on synchronization overhead
during typical dss allocation, but is a substantial improvement for
extent_in_dss() and the newly added extent_dss_mergeable(), which can be
called multiple times during extent deallocations.
This change also has the advantage of avoiding tsd in deallocation paths
associated with purging, which resolves potential deadlocks during
thread exit due to attempted tsd resurrection.
This resolves#425.
Instead, move the epoch backward in time. Additionally, add
nstime_monotonic() and use it in debug builds to assert that time only
goes backward if nstime_update() is using a non-monotonic time source.
pgi fails to compile math.c, reporting that `-INFINITY` in `pt_norm_expected[]`
is a "Non-constant" expression. A simplified version of this failure is:
```c
#include <math.h>
static double inf1, inf2 = INFINITY; // no complaints
static double inf3 = INFINITY; // suddenly INFINITY is "Non-constant"
int main() { }
```
```sh
PGC-S-0074-Non-constant expression in initializer (t.c: 4)
```
pgi errors on the declaration of inf3, and will compile fine if that line is
removed. I've reported this bug to pgi, but in the meantime I just switched to
using (DBL_MAX + DBL_MAX) to work around this bug.
Fix a fundamental extent_split_wrapper() bug in an error path.
Fix extent_recycle() to deregister unsplittable extents before leaking
them.
Relax xallocx() test assertions so that unsplittable extents don't cause
test failures.
With the removal of subchunk size class infrastructure, there are no
large size classes that are guaranteed to be re-expandable in place
unless munmap() is disabled. Work around these legitimate failures with
rallocx() fallback calls. If there were no test configuration for which
the xallocx() calls succeeded, it would be important to override the
extent hooks for testing purposes, but by default these tests don't use
the rallocx() fallbacks on Linux, so test coverage is still sufficient.
rtree-based extent lookups remain more expensive than chunk-based run
lookups, but with this optimization the fast path slowdown is ~3 CPU
cycles per metadata lookup (on Intel Core i7-4980HQ), versus ~11 cycles
prior. The path caching speedup tends to degrade gracefully unless
allocated memory is spread far apart (as is the case when using a
mixture of sbrk() and mmap()).
This makes it possible to acquire short-term "ownership" of rtree
elements so that it is possible to read an extent pointer *and* read the
extent's contents with a guarantee that the element will not be modified
until the ownership is released. This is intended as a mechanism for
resolving rtree read/write races rather than as a way to lock extents.
Use pszind_t size classes rather than szind_t size classes, and always
reserve space for NPSIZES elements. This removes unused heaps that are
not multiples of the page size, and adds (currently) unused heaps for
all huge size classes, with the immediate benefit that the size of
arena_t allocations is constant (no longer dependent on chunk size).
These compute size classes and indices similarly to size2index(),
index2size() and s2u(), respectively, but using the subset of size
classes that are multiples of the page size. Note that pszind_t and
szind_t are not interchangeable.
b2c0d6322d (Add witness, a simple online
locking validator.) caused a broad propagation of tsd throughout the
internal API, but tsd_fetch() was designed to fail prior to tsd
bootstrapping. Fix this by splitting tsd_t into non-nullable tsd_t and
nullable tsdn_t, and modifying all internal APIs that do not critically
rely on tsd to take nullable pointers. Furthermore, add the
tsd_booted_get() function so that tsdn_fetch() can probe whether tsd
bootstrapping is complete and return NULL if not. All dangerous
conversions of nullable pointers are tsdn_tsd() calls that assert-fail
on invalid conversion.
Depending on virtual memory resource limits, it is necessary to attempt
allocating three maximally sized objects to trigger OOM rather than just
two, since the maximum supported size is slightly less than half the
total virtual memory address space.
This fixes a test failure that was introduced by
0c516a00c4 (Make *allocx() size class
overflow behavior defined.).
This resolves#379.