The SDK jemalloc is built against might be not be the latest for various
reasons, but the resulting binary ought to work on newer versions of
OSX.
In order to ensure this, we need the fullest definitions possible, so
copy what we need from the latest version of malloc/malloc.h available
on opensource.apple.com.
This is part of a broader change to make header files better represent the
dependencies between one another (see
https://github.com/jemalloc/jemalloc/issues/533). It breaks up component headers
into smaller parts that can be made to have a simpler dependency graph.
For the autogenerated headers (smoothstep.h and size_classes.h), no splitting
was necessary, so I didn't add support to emit multiple headers.
Refactor ctl_stats_t to be a demand-zeroed non-growing data structure.
To keep the size from being onerous (~60 MiB) on 32-bit systems, convert
the arenas field to contain pointers rather than directly embedded
ctl_arena_stats_t elements.
Add/rename related mallctls:
- Add stats.arenas.<i>.base .
- Rename stats.arenas.<i>.metadata to stats.arenas.<i>.internal .
- Add stats.arenas.<i>.resident .
Modify the arenas.extend mallctl to take an optional (extent_hooks_t *)
argument so that it is possible for all base allocations to be serviced
by the specified extent hooks.
This resolves#463.
Add the --with-lg-hugepage configure option, but automatically configure
LG_HUGEPAGE even if it isn't specified.
Add the pages_[no]huge() functions, which toggle huge page state via
madvise(..., MADV_[NO]HUGEPAGE) calls.
Adds cpp bindings for jemalloc, along with necessary autoconf settings.
This is mostly to add sized deallocation support, which can't be added
from C directly. Sized deallocation is ~10% microbench improvement.
* Import ax_cxx_compile_stdcxx.m4 from the autoconf repo, seems like the
easiest way to get c++14 detection.
* Adds various other changes, like CXXFLAGS, to configure.ac.
* Adds new rules to Makefile.in for src/jemalloc-cpp.cpp, and a basic
unittest.
* Both new and delete are overridden, to ensure jemalloc is used for
both.
* TODO future enhancement of avoiding extra PLT thunks for new and
delete - sdallocx and malloc are publicly exported jemalloc symbols,
using an alias would link them directly. Unfortunately, was having
trouble getting it to play nice with jemalloc's namespace support.
Testing:
Tested gcc 4.8, gcc 5, gcc 5.2, clang 4.0. Only gcc >= 5 has sized
deallocation support, verified that the rest build correctly.
Tested mac osx and Centos.
Tested --with-jemalloc-prefix and --without-export.
This resolves#202.
Add an "over-size" extent heap in which to store extents which exceed
the maximum size class (plus cache-oblivious padding, if enabled).
Remove psz2ind_clamp() and use psz2ind() instead so that trying to
allocate the maximum size class can in principle succeed. In practice,
this allows assertions to hold so that OOM errors can be successfully
generated.
Rather than relying on two's complement negation for alignment mask
generation, use bitwise not and addition. This dodges warnings from
MSVC, and should be strength-reduced by compiler optimization anyway.
Add spin_t and spin_{init,adaptive}(), which provide a simple
abstraction for adaptive spinning.
Adaptively spin during busy waits in bootstrapping and rtree node
initialization.
Avoid calling s2u() on raw extent sizes in extent_recycle().
Clamp psz2ind() (implemented as psz2ind_clamp()) when inserting/removing
into/from size-segregated extent heaps.
GCC 4.9.3 cross-compiled for sparc64 defines __sparc_v9__, not
__sparc64__ nor __sparcv9. This prevents LG_QUANTUM from being defined
properly. Adding this new value to the check solves the issue.
Some bug (either in the red-black tree code, or in the pgi compiler) seems to
cause red-black trees to become unbalanced. This issue seems to go away if we
don't use compact red-black trees. Since red-black trees don't seem to be used
much anymore, I opted for what seems to be an easy fix here instead of digging
in and trying to find the root cause of the bug.
Some context in case it's helpful:
I experienced a ton of segfaults while using pgi as Chapel's target compiler
with jemalloc 4.0.4. The little bit of debugging I did pointed me somewhere
deep in red-black tree manipulation, but I didn't get a chance to investigate
further. It looks like 4.2.0 replaced most uses of red-black trees with
pairing-heaps, which seems to avoid whatever bug I was hitting.
However, `make check_unit` was still failing on the rb test, so I figured the
core issue was just being masked. Here's the `make check_unit` failure:
```sh
=== test/unit/rb ===
test_rb_empty: pass
tree_recurse:test/unit/rb.c:90: Failed assertion: (((_Bool) (((uintptr_t) (left_node)->link.rbn_right_red) & ((size_t)1)))) == (false) --> true != false: Node should be black
test_rb_random:test/unit/rb.c:274: Failed assertion: (imbalances) == (0) --> 1 != 0: Tree is unbalanced
tree_recurse:test/unit/rb.c:90: Failed assertion: (((_Bool) (((uintptr_t) (left_node)->link.rbn_right_red) & ((size_t)1)))) == (false) --> true != false: Node should be black
test_rb_random:test/unit/rb.c:274: Failed assertion: (imbalances) == (0) --> 1 != 0: Tree is unbalanced
node_remove:test/unit/rb.c:190: Failed assertion: (imbalances) == (0) --> 2 != 0: Tree is unbalanced
<jemalloc>: test/unit/rb.c:43: Failed assertion: "pathp[-1].cmp < 0"
test/test.sh: line 22: 12926 Aborted
Test harness error
```
While starting to debug I saw the RB_COMPACT option and decided to check if
turning that off resolved the bug. It seems to have fixed it (`make check_unit`
passes and the segfaults under Chapel are gone) so it seems like on okay
work-around. I'd imagine this has performance implications for red-black trees
under pgi, but if they're not going to be used much anymore it's probably not a
big deal.
Revert 245ae6036c (Support --with-lg-page
values larger than actual page size.), because it could cause VM map
fragmentation if the kernel grows mmap()ed memory downward.
This resolves#391.
Look up chunk metadata via the radix tree, rather than using
CHUNK_ADDR2BASE().
Propagate pointer's containing extent.
Minimize extent lookups by doing a single lookup (e.g. in free()) and
propagating the pointer's extent into nearly all the functions that may
need it.
Use pszind_t size classes rather than szind_t size classes, and always
reserve space for NPSIZES elements. This removes unused heaps that are
not multiples of the page size, and adds (currently) unused heaps for
all huge size classes, with the immediate benefit that the size of
arena_t allocations is constant (no longer dependent on chunk size).
These compute size classes and indices similarly to size2index(),
index2size() and s2u(), respectively, but using the subset of size
classes that are multiples of the page size. Note that pszind_t and
szind_t are not interchangeable.
Short-circuit commonly called witness functions so that they only
execute in debug builds, and remove equivalent guards from mutex
functions. This avoids pointless code execution in
witness_assert_lockless(), which is typically called twice per
allocation/deallocation function invocation.
Inline commonly called witness functions so that optimized builds can
completely remove calls as dead code.
b2c0d6322d (Add witness, a simple online
locking validator.) caused a broad propagation of tsd throughout the
internal API, but tsd_fetch() was designed to fail prior to tsd
bootstrapping. Fix this by splitting tsd_t into non-nullable tsd_t and
nullable tsdn_t, and modifying all internal APIs that do not critically
rely on tsd to take nullable pointers. Furthermore, add the
tsd_booted_get() function so that tsdn_fetch() can probe whether tsd
bootstrapping is complete and return NULL if not. All dangerous
conversions of nullable pointers are tsdn_tsd() calls that assert-fail
on invalid conversion.
This is a broader application of optimizations to malloc() and free() in
f4a0f32d34 (Fast-path improvement:
reduce # of branches and unnecessary operations.).
This resolves#321.
Split arena_choose() into arena_[i]choose() and use arena_ichoose() for
arena lookup during internal allocation. This fixes huge_palloc() so
that it always succeeds during extent node allocation.
This regression was introduced by
66cd953514 (Do not allocate metadata via
non-auto arenas, nor tcaches.).
During over-allocation in preparation for creating aligned mappings,
allocate one more page than necessary if PAGE is the actual page size,
so that trimming still succeeds even if the system returns a mapping
that has less than PAGE alignment. This allows compiling with e.g. 64
KiB "pages" on systems that actually use 4 KiB pages.
Note that for e.g. --with-lg-page=21, it is also necessary to increase
the chunk size (e.g. --with-malloc-conf=lg_chunk:22) so that there are
at least two "pages" per chunk. In practice this isn't a particularly
compelling configuration because so much (unusable) virtual memory is
dedicated to chunk headers.
Refactor ph to support configurable comparison functions. Use a cpp
macro code generation form equivalent to the rb macros so that pairing
heaps can be used for both run heaps and chunk heaps.
Remove per node parent pointers, and instead use leftmost siblings' prev
pointers to track parents.
Fix multi-pass sibling merging to iterate over intermediate results
using a FIFO, rather than a LIFO. Use this fixed sibling merging
implementation for both merge phases of the auxiliary twopass algorithm
(first merging the aux list, then replacing the root with its merged
children). This fixes both degenerate merge behavior and the potential
for deep recursion.
This regression was introduced by
6bafa6678f (Pairing heap).
This resolves#371.
The arenas_extend() function was renamed to arenas_init() in commit
8bb3198f72, but its function declaration
was not removed from jemalloc_internal.h.in.
Initial implementation of a twopass pairing heap with aux list.
Research papers linked in comments.
Where search/nsearch/last aren't needed, this gives much faster first(),
delete(), and insert(). Insert is O(1), and first/delete don't have to
walk the whole tree.
Also tested rb_old with parent pointers - it was better than the current
rb.h for memory loads, but still much worse than a pairing heap.
An array-based heap would be much faster if everything fits in memory,
but on a cold cache it has many more memory loads for most operations.