When config_stats is enabled track the size of bin->slabs_nonfull in
the new nonfull_slabs counter in bin_stats_t. This metric should be
useful for establishing an upper ceiling on the savings possible by
meshing.
The analytics tool is put under experimental.utilization namespace in
mallctl. Input is one pointer or an array of pointers and the output
is a list of memory utilization statistics.
- Make API more clear for using as standalone json emitter
- Support cases that weren't possible before, e.g.
- emitting primitive values in an array
- emitting nested arrays
The global data is mostly only used at initialization, or for easy access to
values we could compute statically. Instead of consuming that space (and
risking TLB misses), we can just pass around a pointer to stack data during
bootstrapping.
The largest small class, smallest large class, and largest large class may all
be needed down fast paths; to avoid the risk of touching another cache line, we
can make them available as constants.
This class removes almost all the dependencies on size_classes.h, accessing the
data there only via the new module sc.h, which does not depend on any
configuration options.
In a subsequent commit, we'll remove the configure-time size class computations,
doing them at boot time, instead.
Before this commit jemalloc produced many warnings when compiled with -Wextra
with both Clang and GCC. This commit fixes the issues raised by these warnings
or suppresses them if they were spurious at least for the Clang and GCC
versions covered by CI.
This commit:
* adds `JEMALLOC_DIAGNOSTIC` macros: `JEMALLOC_DIAGNOSTIC_{PUSH,POP}` are
used to modify the stack of enabled diagnostics. The
`JEMALLOC_DIAGNOSTIC_IGNORE_...` macros are used to ignore a concrete
diagnostic.
* adds `JEMALLOC_FALLTHROUGH` macro to explicitly state that falling
through `case` labels in a `switch` statement is intended
* Removes all UNUSED annotations on function parameters. The warning
-Wunused-parameter is now disabled globally in
`jemalloc_internal_macros.h` for all translation units that include
that header. It is never re-enabled since that header cannot be
included by users.
* locally suppresses some -Wextra diagnostics:
* `-Wmissing-field-initializer` is buggy in older Clang and GCC versions,
where it does not understanding that, in C, `= {0}` is a common C idiom
to initialize a struct to zero
* `-Wtype-bounds` is suppressed in a particular situation where a generic
macro, used in multiple different places, compares an unsigned integer for
smaller than zero, which is always true.
* `-Walloc-larger-than-size=` diagnostics warn when an allocation function is
called with a size that is too large (out-of-range). These are suppressed in
the parts of the tests where `jemalloc` explicitly does this to test that the
allocation functions fail properly.
* adds a new CI build bot that runs the log unit test on CI.
Closes#1196 .
The feature allows using a dedicated arena for huge allocations. We want the
addtional arena to separate huge allocation because: 1) mixing small extents
with huge ones causes fragmentation over the long run (this feature reduces VM
size significantly); 2) with many arenas, huge extents rarely get reused across
threads; and 3) huge allocations happen way less frequently, therefore no
concerns for lock contention.
Previously, we made the user deal with this themselves, but that's not good
enough; if hooks may allocate, we should test the allocation pathways down
hooks. If we're doing that, we might as well actually implement the protection
for the user.
The hook module allows a low-reader-overhead way of finding hooks to invoke and
calling them.
For now, none of the allocation pathways are tied into the hooks; this will come
later.
"Hooks" is really the best name for the module that will contain the publicly
exposed hooks. So lets rename the current "hooks" module (that hook external
dependencies, for reentrancy testing) to "test_hooks".
Looking at the thread counts in our services, jemalloc's background thread
is useful, but mostly idle. Add a config option to tune down the number of threads.
The emitter can be used to produce structured json or tabular output. For now
it has no uses; in subsequent commits, I'll begin transitioning stats printing
code over.
"always" marks all user mappings as MADV_HUGEPAGE; while "never" marks all
mappings as MADV_NOHUGEPAGE. The default setting "default" does not change any
settings. Note that all the madvise calls are part of the default extent hooks
by design, so that customized extent hooks have complete control over the
mappings including hugepage settings.
We have a buffer overrun that manifests in the case where arena indices higher
than the number of CPUs are accessed before arena indices lower than the number
of CPUs. This fixes the bug and adds a test.
When allocating from dirty extents (which we always prefer if available), large
active extents can get split even if the new allocation is much smaller, in
which case the introduced fragmentation causes high long term damage. This new
option controls the threshold to reuse and split an existing active extent. We
avoid using a large extent for much smaller sizes, in order to reduce
fragmentation. In some workload, adding the threshold improves virtual memory
usage by >10x.
This option controls the max size when grow_retained. This is useful when we
have customized extent hooks reserving physical memory (e.g. 1G huge pages).
Without this feature, the default increasing sequence could result in fragmented
and wasted physical memory.
To avoid the high RSS caused by THP + low usage arena (i.e. THP becomes a
significant percentage), added a new "auto" option which will only start using
THP after a base allocator used up the first THP region. Starting from the
second hugepage (in a single arena), "auto" behaves the same as "always",
i.e. madvise hugepage right away.
As part of the metadata_thp support, We now have a separate swtich
(JEMALLOC_HAVE_MADVISE_HUGE) for MADV_HUGEPAGE availability. Use that instead
of JEMALLOC_THP (which doesn't guard pages_huge anymore) in tests.
Currently we have to log by writing something like:
static log_var_t log_a_b_c = LOG_VAR_INIT("a.b.c");
log (log_a_b_c, "msg");
This is sort of annoying. Let's just write:
log("a.b.c", "msg");
Currently, the log macro requires at least one argument after the format string,
because of the way the preprocessor handles varargs macros. We can hide some of
that irritation by pushing the extra arguments into a varargs function.
Forking a multithreaded process is dangerous but allowed, so long as the child
only executes async-signal-safe functions (e.g. exec). Add a test to ensure
that we don't break this behavior.
Add testing for background_thread:true, and condition a xallocx() -->
rallocx() escalation assertion to allow for spurious in-place rallocx()
following xallocx() failure.
Added opt.background_thread to enable background threads, which handles purging
currently. When enabled, decay ticks will not trigger purging (which will be
left to the background threads). We limit the max number of threads to NCPUs.
When percpu arena is enabled, set CPU affinity for the background threads as
well.
The sleep interval of background threads is dynamic and determined by computing
number of pages to purge in the future (based on backlog).
Instead of embedding a lock bit in rtree leaf elements, we associate extents
with a small set of mutexes. This gets us two things:
- We can use the system mutexes. This (hypothetically) protects us from
priority inversion, and lets us stop doing a backoff/sleep loop, instead
opting for precise wakeups from the mutex.
- Cuts down on the number of mutex acquisitions we have to do (from 4 in the
worst case to two).
We end up simplifying most of the rtree code (which no longer has to deal with
locking or concurrency at all), at the cost of additional complexity in the
extent code: since the mutex protecting the rtree leaf elements is determined by
reading the extent out of those elements, the initial read is racy, so that we
may acquire an out of date mutex. We re-check the extent in the leaf after
acquiring the mutex to protect us from this race.
Support millisecond resolution for decay times. Among other use cases
this makes it possible to specify a short initial dirty-->muzzy decay
phase, followed by a longer muzzy-->clean decay phase.
This resolves#812.
This removes the tsd macros (which are used only for tsd_t in real builds). We
break up the circular dependencies involving tsd.
We also move all tsd access through getters and setters. This allows us to
assert that we only touch data when tsd is in a valid state.
We simplify the usages of the x macro trick, removing all the customizability
(get/set, init, cleanup), moving the lifetime logic to tsd_init and tsd_cleanup.
This lets us make initialization order independent of order within tsd_t.
Add the extent_destroy_t extent destruction hook to extent_hooks_t, and
use it during arena destruction. This hook explicitly communicates to
the callee that the extent must be destroyed or tracked for later reuse,
lest it be permanently leaked. Prior to this change, retained extents
could unintentionally be leaked if extent retention was enabled.
This resolves#560.
Control use of munmap(2) via a run-time option rather than a
compile-time option (with the same per platform default). The old
behavior of --disable-munmap can be achieved with
--with-malloc-conf=munmap:false.
This partially resolves#580.
Simplify configuration by removing the --disable-tcache option, but
replace the testing for that configuration with
--with-malloc-conf=tcache:false.
Fix the thread.arena and thread.tcache.flush mallctls to work correctly
if tcache is disabled.
This partially resolves#580.
All mappings continue to be PAGE-aligned, even if the system page size
is smaller. This change is primarily intended to provide a mechanism
for supporting multiple page sizes with the same binary; smaller page
sizes work better in conjunction with jemalloc's design.
This resolves#467.
Some systems use a native 64 KiB page size, which means that the bitmap
for the smallest size class can be 8192 bits, not just 512 bits as when
the page size is 4 KiB. Linear search in bitmap_{sfu,ffu}() is
unacceptably slow for such large bitmaps.
This reverts commit 7c00f04ff4.
With this change, when profiling is enabled, we avoid doing redundant rtree
lookups. Also changed dalloc_atx_t to alloc_atx_t, as it's now used on
allocation path as well (to speed up profiling).