Implement the pointer-based metadata for tcache bins --
- 3 pointers are maintained to represent each bin;
- 2 of the pointers are compressed on 64-bit;
- is_full / is_empty done through pointer comparison;
Comparing to the previous counter based design --
- fast-path speed up ~15% in benchmarks
- direct pointer comparison and de-reference
- no need to access tcache_bin_info in common case
JSON format is largely meant for machine-machine communication, so
adding the option to the emitter. According to local testing, the
savings in terms of bytes outputted is around 50% for stats printing
and around 25% for prof log printing.
Refactored core profiling codebase into two logical parts:
(a) `prof_data.c`: core internal data structure managing & dumping;
(b) `prof.c`: mutexes & outward-facing APIs.
Some internal functions had to be exposed out, but there are not
that many of them if the modularization is (hopefully) clean enough.
Prof logging is conceptually seperate from core profiling, so
split it out as a module of its own. There are a few internal
functions that had to be exposed but I think it is a fair trade-off.
Augmented the tsd layout graph so that the two recently added fields,
`offset_state` and `bytes_until_sample`, are properly reflected.
As is shown, the cache footprint is 16 bytes larger than before.
Refactored core profiling codebase into two logical parts:
(a) `prof_data.c`: core internal data structure managing & dumping;
(b) `prof.c`: mutexes & outward-facing APIs.
Some internal functions had to be exposed out, but there are not
that many of them if the modularization is (hopefully) clean enough.
`prof.c` is growing too long, so trying to modularize it. There are
a few internal functions that had to be exposed but I think it is a
fair trade-off.
The VirtualAlloc and VirtualFree APIs are different because MEM_DECOMMIT cannot
be used across multiple VirtualAlloc regions. To properly support decommit,
only allow merge / split within the same region -- this is done by tracking the
"is_head" state of extents and not merging cross-region.
Add a new state is_head (only relevant for retain && !maps_coalesce), which is
true for the first extent in each VirtualAlloc region. Determine if two extents
can be merged based on the head state, and use serial numbers for sanity checks.
`cbopaque` can now be overriden without overriding `write_cb` in
the first place. (Otherwise there would be no need to have the
`cbopaque` parameter in `malloc_message`.)
If the confirm_conf option is set, when the program starts, each of
the four malloc_conf strings will be printed, and each option will
be printed when being set.
Small is added purely for convenience. Large flushes wasn't tracked before and
can be useful in analysis. Large fill simply reports nmalloc, since there is no
batch fill for large currently.
When config_stats is enabled track the size of bin->slabs_nonfull in
the new nonfull_slabs counter in bin_stats_t. This metric should be
useful for establishing an upper ceiling on the savings possible by
meshing.
Mainly fixing typos. The only non-trivial change is in the
computation for SC_NPSIZES, though the result wouldn't be any
different when SC_NGROUP = 4 as is always the case at the moment.
Summary: sdallocx is checking a flag that will never be set (at least in the provided C++ destructor implementation). This branch will probably only rarely be mispredicted however it removes two instructions in sdallocx and one at the callsite (to zero out flags).
The analytics tool is put under experimental.utilization namespace in
mallctl. Input is one pointer or an array of pointers and the output
is a list of memory utilization statistics.
This fixes a build failure when integrating with FreeBSD's libc. This
regression was introduced by d1e11d48d4
(Move tsd link and in_hook after tcache.).
This feature uses an dedicated arena to handle huge requests, which
significantly improves VM fragmentation. In production workload we tested it
often reduces VM size by >30%.
For low arena count settings, the huge threshold feature may trigger an unwanted
bg thd creation. Given that the huge arena does eager purging by default,
bypass bg thd creation when initializing the huge arena.
When custom extent_hooks or transparent huge pages are in use, the purging
semantics may change, which means we may not get zeroed pages on repopulating.
Fixing the issue by manually memset for such cases.
This makes it possible to have multiple set of bins in an arena, which improves
arena scalability because the bins (especially the small ones) are always the
limiting factor in production workload.
A bin shard is picked on allocation; each extent tracks the bin shard id for
deallocation. The shard size will be determined using runtime options.
If there are 3 or more threads spin-waiting on the same mutex,
there will be excessive exclusive cacheline contention because
pthread_trylock() immediately tries to CAS in a new value, instead
of first checking if the lock is locked.
This diff adds a 'locked' hint flag, and we will only spin wait
without trylock()ing while set. I don't know of any other portable
way to get the same behavior as pthread_mutex_lock().
This is pretty easy to test via ttest, e.g.
./ttest1 500 3 10000 1 100
Throughput is nearly 3x as fast.
This blames to the mutex profiling changes, however, we almost never
have 3 or more threads contending in properly configured production
workloads, but still worth fixing.
For a free fastpath, we want something that will not make additional
calls. Assume most free() calls will hit the L1 cache, and use
a custom rtree function for this.
Additionally, roll the ptr=NULL check in to the rtree cache check.
Nearly all 32-bit powerpc hardware treats lwsync as sync, and some cores
(Freescale e500) trap lwsync as an illegal instruction, which then gets
emulated in the kernel. To avoid unnecessary traps on the e500, use
sync on all 32-bit powerpc. This pessimizes 32-bit software running on
64-bit hardware, but those numbers should be slim.
The diff 'refactor prof accum...' moved the bytes_until_sample
subtraction before the load of tdata. If tdata is null,
tdata_get(true) will overwrite bytes_until_sample, but we
still sample the current allocation. Instead, do the subtraction
and check logic again, to keep the previous behavior.
blame-rev: 0ac524308d
The experimental `smallocx` API is not exposed via header files,
requiring the users to peek at `jemalloc`'s source code to manually
add the external declarations to their own programs.
This should reinforce that `smallocx` is experimental, and that `jemalloc`
does not offer any kind of backwards compatiblity or ABI gurantees for it.
---
Motivation:
This new experimental memory-allocaction API returns a pointer to
the allocation as well as the usable size of the allocated memory
region.
The `s` in `smallocx` stands for `sized`-`mallocx`, attempting to
convey that this API returns the size of the allocated memory region.
It should allow C++ P0901r0 [0] and Rust Alloc::alloc_excess to make
use of it.
The main purpose of these APIs is to improve telemetry. It is more accurate
to register `smallocx(size, flags)` than `smallocx(nallocx(size), flags)`,
for example. The latter will always line up perfectly with the existing
size classes, causing a loss of telemetry information about the internal
fragmentation induced by potentially poor size-classes choices.
Instrumenting `nallocx` does not help much since user code can cache its
result and use it repeatedly.
---
Implementation:
The implementation adds a new `usize` option to `static_opts_s` and an `usize`
variable to `dynamic_opts_s`. These are then used to cache the result of
`sz_index2size` and similar functions in the code paths in which they are
unconditionally invoked. In the code-paths in which these functions are not
unconditionally invoked, `smallocx` calls, as opposed to `mallocx`, these
functions explicitly.
---
[0]: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0901r0.html
generation of sub bytes_until_sample, usize; je; for x86 arch.
Subtraction is unconditional, and only flags are checked for the jump,
no extra compare is necessary. This also reduces register pressure.
- Make API more clear for using as standalone json emitter
- Support cases that weren't possible before, e.g.
- emitting primitive values in an array
- emitting nested arrays
In case of multithreaded fork, we want to leave the child in a reasonable state,
in which tsd_nominal_tsds is either empty or contains only the forking thread.
The global data is mostly only used at initialization, or for easy access to
values we could compute statically. Instead of consuming that space (and
risking TLB misses), we can just pass around a pointer to stack data during
bootstrapping.
The largest small class, smallest large class, and largest large class may all
be needed down fast paths; to avoid the risk of touching another cache line, we
can make them available as constants.
This class removes almost all the dependencies on size_classes.h, accessing the
data there only via the new module sc.h, which does not depend on any
configuration options.
In a subsequent commit, we'll remove the configure-time size class computations,
doing them at boot time, instead.
Before this commit jemalloc produced many warnings when compiled with -Wextra
with both Clang and GCC. This commit fixes the issues raised by these warnings
or suppresses them if they were spurious at least for the Clang and GCC
versions covered by CI.
This commit:
* adds `JEMALLOC_DIAGNOSTIC` macros: `JEMALLOC_DIAGNOSTIC_{PUSH,POP}` are
used to modify the stack of enabled diagnostics. The
`JEMALLOC_DIAGNOSTIC_IGNORE_...` macros are used to ignore a concrete
diagnostic.
* adds `JEMALLOC_FALLTHROUGH` macro to explicitly state that falling
through `case` labels in a `switch` statement is intended
* Removes all UNUSED annotations on function parameters. The warning
-Wunused-parameter is now disabled globally in
`jemalloc_internal_macros.h` for all translation units that include
that header. It is never re-enabled since that header cannot be
included by users.
* locally suppresses some -Wextra diagnostics:
* `-Wmissing-field-initializer` is buggy in older Clang and GCC versions,
where it does not understanding that, in C, `= {0}` is a common C idiom
to initialize a struct to zero
* `-Wtype-bounds` is suppressed in a particular situation where a generic
macro, used in multiple different places, compares an unsigned integer for
smaller than zero, which is always true.
* `-Walloc-larger-than-size=` diagnostics warn when an allocation function is
called with a size that is too large (out-of-range). These are suppressed in
the parts of the tests where `jemalloc` explicitly does this to test that the
allocation functions fail properly.
* adds a new CI build bot that runs the log unit test on CI.
Closes#1196 .
The feature allows using a dedicated arena for huge allocations. We want the
addtional arena to separate huge allocation because: 1) mixing small extents
with huge ones causes fragmentation over the long run (this feature reduces VM
size significantly); 2) with many arenas, huge extents rarely get reused across
threads; and 3) huge allocations happen way less frequently, therefore no
concerns for lock contention.