Prior to this change, the malloc_conf weak symbol provided by the
jemalloc dynamic library is always used, even if the application
provides a malloc_conf symbol. Use the --whole-archive linker option
to allow the weak symbol to be overridden.
Rather than protecting dss operations with a mutex, use atomic
operations. This has negligible impact on synchronization overhead
during typical dss allocation, but is a substantial improvement for
extent_in_dss() and the newly added extent_dss_mergeable(), which can be
called multiple times during extent deallocations.
This change also has the advantage of avoiding tsd in deallocation paths
associated with purging, which resolves potential deadlocks during
thread exit due to attempted tsd resurrection.
This resolves#425.
Add spin_t and spin_{init,adaptive}(), which provide a simple
abstraction for adaptive spinning.
Adaptively spin during busy waits in bootstrapping and rtree node
initialization.
Simplify decay-based purging attempts to only be triggered when the
epoch is advanced, rather than every time purgeable memory increases.
In a correctly functioning system (not previously the case; see below),
this only causes a behavior difference if during subsequent purge
attempts the least recently used (LRU) purgeable memory extent is
initially too large to be purged, but that memory is reused between
attempts and one or more of the next LRU purgeable memory extents are
small enough to be purged. In practice this is an arbitrary behavior
change that is within the set of acceptable behaviors.
As for the purging fix, assure that arena->decay.ndirty is recorded
*after* the epoch advance and associated purging occurs. Prior to this
fix, it was possible for purging during epoch advance to cause a
substantially underrepresentative (arena->ndirty - arena->decay.ndirty),
i.e. the number of dirty pages attributed to the current epoch was too
low, and a series of unintended purges could result. This fix is also
relevant in the context of the simplification described above, but the
bug's impact would be limited to over-purging at epoch advances.
Instead, move the epoch backward in time. Additionally, add
nstime_monotonic() and use it in debug builds to assert that time only
goes backward if nstime_update() is using a non-monotonic time source.
Add missing #include <time.h>. The critical time facilities appear to
have been transitively included via unistd.h and sys/time.h, but in
principle this omission was capable of having caused
clock_gettime(CLOCK_MONOTONIC, ...) to have been overlooked in favor of
gettimeofday(), which in turn could cause spurious non-monotonic time
updates.
Refactor nstime_get() out of nstime_update() and add configure tests for
all variants.
Add CLOCK_MONOTONIC_RAW support (Linux-specific) and
mach_absolute_time() support (OS X-specific).
Do not fall back to clock_gettime(CLOCK_REALTIME, ...). This was a
fragile Linux-specific workaround, which we're unlikely to use at all
now that clock_gettime(CLOCK_MONOTONIC_RAW, ...) is supported, and if we
have no choice besides non-monotonic clocks, gettimeofday() is only
incrementally worse.
Avoid calling s2u() on raw extent sizes in extent_recycle().
Clamp psz2ind() (implemented as psz2ind_clamp()) when inserting/removing
into/from size-segregated extent heaps.
GCC 4.9.3 cross-compiled for sparc64 defines __sparc_v9__, not
__sparc64__ nor __sparcv9. This prevents LG_QUANTUM from being defined
properly. Adding this new value to the check solves the issue.
In 1167e9e, I accidentally tested je_cv_gcc_builtin_ffsl instead of
je_cv_gcc_builtin_unreachable (copy-paste error), which meant that
JEMALLOC_INTERNAL_UNREACHABLE was always getting defined as abort even if
__builtin_unreachable support was detected.
This works around GitHub's broken automatic reformatting from ISO-8859-1
to UTF-8 when serving static html.
Remove <parameter/> from e.g. <function>malloc<parameter/></function>,
add a custom template that does not append parentheses, and manually
specify them, e.g. <function>malloc()</function>. This works around
apparently broken XSL formatting that causes <code/> to be emitted in
html (rather than <code></code>, or better yet, nothing).
On OSX 10.12, malloc_default_zone returns a special zone that is not
present in the list of registered zones. That zone uses a "lite zone"
if one is present (apparently enabled when malloc stack logging is
enabled), or the first registered zone otherwise. In practice this
means unless malloc stack logging is enabled, the first registered
zone is the default.
So get the list of zones to get the first one, instead of relying on
malloc_default_zone.
847ff22 added a call to malloc_default_zone() before the main loop in
register_zone, effectively making malloc_default_zone() called twice
without any different outcome expected in the returned result.
It is also called once at the beginning, and a second time at the end
of the loop block.
Instead, call it only once per iteration.
Cray is pretty warning-happy, so disable ones that aren't helpful. Each warning
has a numeric value instead of having named flags to disable specific warnings.
Disable warnings 128 and 1357.
128: Ignore unreachable code warning. Cray warns about `not_reached()` not
being reachable in a couple of places because it detects that some loops
will never terminate.
1357: Ignore warning about redefinition of malloc and friends
With this patch, Cray 8.4.0 and 8.5.1 build cleanly and pass `make check`
Cray uses -herror_on_warning instead of -Werror. Use it everywhere -Werror is
currently used for __attribute__ checks so configure actually detects they're
not supported.
Cray only supports `-M` for generating dependency files. It does not support
`-MM` or `-MT`, so don't try to use them. I just reused the existing mechanism
for turning auto-dependency generation off (`CC_MM=`), but it might be more
principled to add a configure test to check if the compiler supports `-MM` and
`-MT`, instead of manually tracking which compilers don't support those flags.
Get jemalloc building and passing `make check_unit` with cray 8.4. An inlining
bug in 8.4 results in internal errors while trying to build jemalloc. This has
already been reported and fixed for the 8.5 release.
In order to work around the inlining bug, disable gnu compatibility and limit
ipa optimizations.
I copied the msvc compiler check for cray, but note that we perform the test
even if we think we're using gcc because cray pretends to be gcc if `-hgnu`
(which is enabled by default) is used. I couldn't come up with a principled way
to check for the inlining bug, so instead I just checked compiler versions.
The build had lots of warnings I need to address and cray doesn't support -MM
or -MT for dependency tracking, so I had to do `make CC_MM=`.
Add a configure check for __builtin_unreachable instead of basing its
availability on the __GNUC__ version. On OS X using gcc (a real gcc, not the
bundled version that's just a gcc front-end) leads to a linker assertion:
https://github.com/jemalloc/jemalloc/issues/266
It turns out that this is caused by a gcc bug resulting from the use of
__builtin_unreachable():
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=57438
To work around this bug, check that __builtin_unreachable() actually works at
configure time, and if it doesn't use abort() instead. The check is based on
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=57438#c21.
With this `make check` passes with a homebrew installed gcc-5 and gcc-6.
The Cray compiler wrappers will often add `-lrt` to the base compiler with
`-static` linking (the default at most sites.) However, `-lrt` isn't
automatically added with `-dynamic`. This means that if jemalloc was built with
`-static`, but then used in a program with `-dynamic` jemalloc won't have
detected that librt is a dependency.
The integration and stress tests use -dynamic, which is causing undefined
references to clock_gettime().
This just adds an extra check for librt (ignoring the autoconf cache) with
`-dynamic` thrown. It also stops filtering librt from the integration tests.
With this `make check` passes for:
- PrgEnv-gnu
- PrgEnv-intel
- PrgEnv-pgi
PrgEnv-cray still needs more work (will be in a separate patch.)
Cray systems come with compiler wrappers to simplify building parallel
applications. CC is the C++ wrapper, and cc is the C wrapper.
The wrappers call the base {Cray, Intel, PGI, or GNU} compiler with vendor
specific flags. The "Programming Environment" (prgenv) that's currently loaded
determines the base compiler. e.g. compiling with gnu looks something like:
module load PrgEnv-gnu
cc hello.c
On most systems the wrappers defaults to `-static` mode, which causes them to
only look for static libraries, and not for any dynamic ones (even if the
dynamic version was explicitly listed.)
The integration and stress tests expect to be using the .so, so we have to run
the with -dynamic so that wrapper will find/use the .so.
This builds jemalloc and runs all checks with:
- MSVC 2015 64-bits
- MSVC 2015 32-bits
- MINGW64 (from msys2)
- MINGW32 (from msys2)
Normally, AppVeyor configs are named appveyor.yml, but it is possible to
configure the .yml file name in the AppVeyor project settings such that
the file stays "hidden", like typical travis configs.
Some bug (either in the red-black tree code, or in the pgi compiler) seems to
cause red-black trees to become unbalanced. This issue seems to go away if we
don't use compact red-black trees. Since red-black trees don't seem to be used
much anymore, I opted for what seems to be an easy fix here instead of digging
in and trying to find the root cause of the bug.
Some context in case it's helpful:
I experienced a ton of segfaults while using pgi as Chapel's target compiler
with jemalloc 4.0.4. The little bit of debugging I did pointed me somewhere
deep in red-black tree manipulation, but I didn't get a chance to investigate
further. It looks like 4.2.0 replaced most uses of red-black trees with
pairing-heaps, which seems to avoid whatever bug I was hitting.
However, `make check_unit` was still failing on the rb test, so I figured the
core issue was just being masked. Here's the `make check_unit` failure:
```sh
=== test/unit/rb ===
test_rb_empty: pass
tree_recurse:test/unit/rb.c:90: Failed assertion: (((_Bool) (((uintptr_t) (left_node)->link.rbn_right_red) & ((size_t)1)))) == (false) --> true != false: Node should be black
test_rb_random:test/unit/rb.c:274: Failed assertion: (imbalances) == (0) --> 1 != 0: Tree is unbalanced
tree_recurse:test/unit/rb.c:90: Failed assertion: (((_Bool) (((uintptr_t) (left_node)->link.rbn_right_red) & ((size_t)1)))) == (false) --> true != false: Node should be black
test_rb_random:test/unit/rb.c:274: Failed assertion: (imbalances) == (0) --> 1 != 0: Tree is unbalanced
node_remove:test/unit/rb.c:190: Failed assertion: (imbalances) == (0) --> 2 != 0: Tree is unbalanced
<jemalloc>: test/unit/rb.c:43: Failed assertion: "pathp[-1].cmp < 0"
test/test.sh: line 22: 12926 Aborted
Test harness error
```
While starting to debug I saw the RB_COMPACT option and decided to check if
turning that off resolved the bug. It seems to have fixed it (`make check_unit`
passes and the segfaults under Chapel are gone) so it seems like on okay
work-around. I'd imagine this has performance implications for red-black trees
under pgi, but if they're not going to be used much anymore it's probably not a
big deal.
pgi fails to compile math.c, reporting that `-INFINITY` in `pt_norm_expected[]`
is a "Non-constant" expression. A simplified version of this failure is:
```c
#include <math.h>
static double inf1, inf2 = INFINITY; // no complaints
static double inf3 = INFINITY; // suddenly INFINITY is "Non-constant"
int main() { }
```
```sh
PGC-S-0074-Non-constant expression in initializer (t.c: 4)
```
pgi errors on the declaration of inf3, and will compile fine if that line is
removed. I've reported this bug to pgi, but in the meantime I just switched to
using (DBL_MAX + DBL_MAX) to work around this bug.