Currently used only for guarding purposes, the hint is used to determine
if the allocation is supposed to be frequently reused. For example, it
might urge the allocator to ensure the allocation is cached.
While initially this file contained helper functions for one particular
test, now its usage spread across different test files. Purpose has
shifted towards a collection of handy arena ctl wrappers.
With prof enabled, number of page aligned allocations doesn't match the
number of slab "ends" because prof allocations skew the addresses. It
leads to 'pages' array overflow and hard to debug failures.
In order for nstime_update to handle non-monotonic clocks, it requires the input
nstime to be initialized -- when reading for the first time, zero init has to be
done. Otherwise random stack value may be seen as clocks and returned.
As the code evolves, some code paths that have previously assigned
deferred_work_generated may cease being reached. This would leave the value
uninitialized. This change initializes the value for safety.
Adding guarded extents, which are regular extents surrounded by guard pages
(mprotected). To reduce syscalls, small guarded extents are cached as a
separate eset in ecache, and decay through the dirty / muzzy / retained pipeline
as usual.
This mallctl accepts an arena_config_t structure which
can be used to customize the behavior of the arena.
Right now it contains extent_hooks and a new option,
metadata_use_hooks, which controls whether the extent
hooks are also used for metadata allocation.
The medata_use_hooks option has two main use cases:
1. In heterogeneous memory systems, to avoid metadata
being placed on potentially slower memory.
2. Avoiding virtual memory from being leaked as a result
of metadata allocation failure originating in an extent hook.
Existing backtrace implementations skip native stack frames from runtimes like
Python. The hook allows to augment the backtraces to attribute allocations to
native functions in heap profiles.
The prof initialization is done only when opt_prof is true. This change makes
sure the prof_* mallctls only have limited read access (i.e. no access to prof
internals) when opt_prof is false.
In addition, initialize the global prof mutexes even if opt_prof is false. This
makes sure the mutex stats are set properly.
This change allows every allocator conforming to PAI communicate that it
deferred some work for the future. Without it if a background thread goes into
indefinite sleep, there is no way to notify it about upcoming deferred work.
Previously the calculation of sleep time between wakeups was implemented within
background_thread. This resulted in some parts of decay and hpa specific
logic mixing with background thread implementation. In this change, background
thread delegates this calculation to arena and it, in turn, delegates it to PAI.
The next step is to implement the actual calculation of time until deferred work
in HPA.
Specifically, this change allows the default alloc hook to used during
arenas.create. One use case is to invoke the default alloc hook in a customized
hook arena, i.e. the default hooks can be read out of a default arena, then
create customized ones based on these hooks. Note that mixing the default with
customized hooks is not recommended, and should only be considered when the
customization is simple and straightforward.
By force-inlining everything that would otherwise be a macro, we get the same
effect (it's not clear in the first place that this is actually a good idea, but
it avoids making any changes to the existing performance profile).
This makes the code more maintainable (in anticipation of subsequent changes),
as well as making performance profiles and debug info more readable (we get
"real" line numbers, instead of making everything point to the macro definition
of all associated functions).
The edata_cache_small had a fill/flush heuristic. In retrospect, this was a
premature optimization; more testing indicates that an unbounded cache is
effectively fine here, and moreover we spend a nontrivial amount of time doing
unnecessary filling/flushing.
As the HPA takes on a larger and larger fraction of all allocations, any
theoretical differences in allocation patterns should shrink. The HPA is more
efficient with its metadata in general, so it still comes out ahead on metadata
usage anyways.
We wait a while after deciding a huge extent should get hugified to see if it
gets purged before long. This avoids hugifying extents that might shortly get
dehugified for purging.
Rename and use the hpa_dehugification_threshold option support code for this,
since it's now ignored.
This is a simple multi-producer, single-consumer queue. The intended use case
is in the HPA, as we begin supporting hpdatas that move between hpa_shards. We
take just a single CAS as the cost to send a message (or a batch of messages) in
the low-contention case, and lock-freedom lets us avoid some lock-ordering
issues.
This change pulls the SEC options into a struct, which simplifies their handling
across various modules (e.g. PA needs to forward on SEC options from the
malloc_conf string, but it doesn't really need to know their names). While
we're here, make some of the fixed constants configurable, and unify naming from
the configuration options to the internals.
Currently that just means max_alloc, but we're about to add more. While we're
touching these lines anyways, tweak things to be more in line with testing.
This finishes the refactoring of the HPA/psset interactions the past few commits
have been building towards.
Rather than the HPA removing and then reinserting hpdatas, it simply begins
updates and ends them. These updates can set flags on the hpdata that prevent
it from being returned for certain types of requests. For example, it can call
hpdata_alloc_allowed_set(hpdata, false) during an update, at which point the
given hpdata will no longer be returned for psset_pick_alloc requests.
This has various of benefits:
- It maintains stats correctness during purges and hugifies.
- It allows simpler and more explicit concurrency control for the various
special cases (e.g. allocations are disallowed during purge, but not during
hugify).
- It lets allocations and deallocations avoid disturbing the purging and
hugification orderings. If an hpdata "loses its place" in one of the queues
just do to an alloc / dalloc, it can result in pathological edge cases where
very hot, very full hugepages never get hugified (and cold extents on the
same hugepage as hot ones never get purged).
The key benefit though is that tracking hpdatas to be purged / hugified in a
principled way will let us do delayed purging and hugification. Eventually this
will let us move these operations to background threads, but in the short term
the benefit is that it will let us have global purging policies (e.g. purge when
the entire arena has too many dirty pages, rather than any particular hugepage).
We're moving towards a world in which purging decisions are less rigidly
enforced at a single-hugepage level. In that world, it makes sense to keep
around some hpdatas which are not completely purged, in which case we'll need to
track them.
Really, this isn't a functional change, just a naming change. We start thinking
of pageslabs as being always in the psset. What we used to think of as removal
is now thought of as being in the psset, but in the process of being updated
(and therefore, unavalable for serving new allocations).
This is in preparation of subsequent changes to support deferred purging;
allocations will still be in the psset for the purposes of choosing when to
purge, but not for purposes of allocation/deallocation.
This is really only useful for human consumption. Correspondingly, emit it only
in the human-readable stats, and let everybody else compute from the hugepage
size and nactive.
Previously, we would purge a hugepage only when it's completely empty. With
this change, we can purge even when only partially empty. Although the
heuristic here is still fairly primitive, this infrastructure can scale to
become more advanced.
The items we pick to flush matter a lot, but the order in which they get flushed
doesn't; just use forward scans. This simplifies the accessing code, both in
terms of the C and the generated assembly (i.e. this speeds up the flush
pathways).
By carefully force-inlining the division constants and the operation sum count,
we can eliminate redundant operations in the arena-level dalloc function. Do
so.
qemu does not support this, yet [1], and you can get very tricky assert
if you will run program with jemalloc in use under qemu:
<jemalloc>: ../contrib/jemalloc/src/extent.c:1195: Failed assertion: "p[i] == 0"
[1]: https://patchwork.kernel.org/patch/10576637/
Here is a simple example that shows the problem [2]:
// Gist to check possible issues with MADV_DONTNEED
// For example it does not supported by qemu user
// There is a patch for this [1], but it hasn't been applied.
// [1]: https://lists.gnu.org/archive/html/qemu-devel/2018-08/msg05422.html
#include <sys/mman.h>
#include <stdio.h>
#include <stddef.h>
#include <assert.h>
#include <string.h>
int main(int argc, char **argv)
{
void *addr = mmap(NULL, 1<<16, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (addr == MAP_FAILED) {
perror("mmap");
return 1;
}
memset(addr, 'A', 1<<16);
if (!madvise(addr, 1<<16, MADV_DONTNEED)) {
puts("MADV_DONTNEED does not return error. Check memory.");
for (int i = 0; i < 1<<16; ++i) {
assert(((unsigned char *)addr)[i] == 0);
}
} else {
perror("madvise");
}
if (munmap(addr, 1<<16)) {
perror("munmap");
return 1;
}
return 0;
}
### unpatched qemu
$ qemu-x86_64-static /tmp/test-MADV_DONTNEED
MADV_DONTNEED does not return error. Check memory.
test-MADV_DONTNEED: /tmp/test-MADV_DONTNEED.c:19: main: Assertion `((unsigned char *)addr)[i] == 0' failed.
qemu: uncaught target signal 6 (Aborted) - core dumped
Aborted (core dumped)
### patched qemu (by returning ENOSYS error)
$ qemu-x86_64 /tmp/test-MADV_DONTNEED
madvise: Success
### patch for qemu to return ENOSYS
diff --git a/linux-user/syscall.c b/linux-user/syscall.c
index 897d20c076..5540792e0e 100644
--- a/linux-user/syscall.c
+++ b/linux-user/syscall.c
@@ -11775,7 +11775,7 @@ static abi_long do_syscall1(void *cpu_env, int num, abi_long arg1,
turns private file-backed mappings into anonymous mappings.
This will break MADV_DONTNEED.
This is a hint, so ignoring and returning success is ok. */
- return 0;
+ return ENOSYS;
#endif
#ifdef TARGET_NR_fcntl64
case TARGET_NR_fcntl64:
[2]: https://gist.github.com/azat/12ba2c825b710653ece34dba7f926ece
v2:
- review fixes
- add opt_dont_trust_madvise
v3:
- review fixes
- rename opt_dont_trust_madvise to opt_trust_madvise
This fixes an incorrect debug-mode assert:
- T1 starts an arena stats update and reads stack_head from another thread's
cache bin, when that cache bin has 1 item in it.
- T2 allocates from that cache bin. The cache_bin's stack_head now points to a
NULL pointer, since the cache bin is empty.
- T1 Re-reads the cache_bin's stack_head to perform an assertion check (since it
previously saw that the bin was empty, whatever stack_head points to should be
non-NULL).
We do not fail on partial ctl path when the given `mib` array is
shorter than the given name, and we should keep the behavior the
same in the reverse case, which I feel is also the more natural way.
This is no longer part of the "core" functionality; we only need the stub
implementations as an end-to-end test of hpdata + psset interactions when
metadata is being modified. Treat them accordingly.
Using an edata_t both for hugepages and the allocations within those hugepages
was convenient at first, but has outlived its usefulness. Representing
hugepages explicitly, with their own data structure, will make future
development easier.