My distro offers a custom toolchain where it's not possible to make
static libs, so it's insufficient to just delete the libs I don't want.
I actually need to avoid building them in the first place.
---
Motivation:
This new experimental memory-allocaction API returns a pointer to
the allocation as well as the usable size of the allocated memory
region.
The `s` in `smallocx` stands for `sized`-`mallocx`, attempting to
convey that this API returns the size of the allocated memory region.
It should allow C++ P0901r0 [0] and Rust Alloc::alloc_excess to make
use of it.
The main purpose of these APIs is to improve telemetry. It is more accurate
to register `smallocx(size, flags)` than `smallocx(nallocx(size), flags)`,
for example. The latter will always line up perfectly with the existing
size classes, causing a loss of telemetry information about the internal
fragmentation induced by potentially poor size-classes choices.
Instrumenting `nallocx` does not help much since user code can cache its
result and use it repeatedly.
---
Implementation:
The implementation adds a new `usize` option to `static_opts_s` and an `usize`
variable to `dynamic_opts_s`. These are then used to cache the result of
`sz_index2size` and similar functions in the code paths in which they are
unconditionally invoked. In the code-paths in which these functions are not
unconditionally invoked, `smallocx` calls, as opposed to `mallocx`, these
functions explicitly.
---
[0]: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0901r0.html
Before this commit jemalloc produced many warnings when compiled with -Wextra
with both Clang and GCC. This commit fixes the issues raised by these warnings
or suppresses them if they were spurious at least for the Clang and GCC
versions covered by CI.
This commit:
* adds `JEMALLOC_DIAGNOSTIC` macros: `JEMALLOC_DIAGNOSTIC_{PUSH,POP}` are
used to modify the stack of enabled diagnostics. The
`JEMALLOC_DIAGNOSTIC_IGNORE_...` macros are used to ignore a concrete
diagnostic.
* adds `JEMALLOC_FALLTHROUGH` macro to explicitly state that falling
through `case` labels in a `switch` statement is intended
* Removes all UNUSED annotations on function parameters. The warning
-Wunused-parameter is now disabled globally in
`jemalloc_internal_macros.h` for all translation units that include
that header. It is never re-enabled since that header cannot be
included by users.
* locally suppresses some -Wextra diagnostics:
* `-Wmissing-field-initializer` is buggy in older Clang and GCC versions,
where it does not understanding that, in C, `= {0}` is a common C idiom
to initialize a struct to zero
* `-Wtype-bounds` is suppressed in a particular situation where a generic
macro, used in multiple different places, compares an unsigned integer for
smaller than zero, which is always true.
* `-Walloc-larger-than-size=` diagnostics warn when an allocation function is
called with a size that is too large (out-of-range). These are suppressed in
the parts of the tests where `jemalloc` explicitly does this to test that the
allocation functions fail properly.
* adds a new CI build bot that runs the log unit test on CI.
Closes#1196 .
This patch allows to override the lg-vaddr values, which
are defined by the build machine's CPUID information (x86_64)
or default values (other architectures like aarch64).
Signed-off-by: Christoph Muellner <christoph.muellner@theobroma-systems.com>
Instead of setting a fix value of 48 allowed VA bits,
we distiguish between LP64 and ILP32.
Testsuite result with LP64:
Test suite summary: pass: 13/13, skip: 0/13, fail: 0/13
Testsuit result with ILP32:
Test suite summary: pass: 13/13, skip: 0/13, fail: 0/13
Signed-off-by: Christoph Muellner <christoph.muellner@theobroma-systems.com>
Reviewed-by: Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
Right now we always make our TLS use the initial-exec model if the compiler
supports it. This change allows configure-time disabling of this setting, which
can be helpful when dynamically loading jemalloc is the only option.
On glibc and Android's bionic, strerror_r returns char* when
_GNU_SOURCE is defined.
Add a configure check for this rather than assume glibc is the
only libc that behaves this way.
All the invocations of AC_COMPILE_IFELSE inside JE_CXXFLAGS_ADD were
running 'the compiler and compilation flags of the current language'
which was always the C compiler and the CXXFLAGS were never being tested
against a C++ compiler. This patch fixes this issue by temporarily
changing the chosen compiler to C++ by pushing it over the stack and
popping it immediately after the compilation check.
On x86 Linux, we define our own MADV_FREE if madvise(2) is available, but no
MADV_FREE is detected. This allows the feature to be built in and enabled with
runtime detection.
Quoting from https://github.com/jemalloc/jemalloc/issues/761 :
[...] reading the Power ISA documentation[1], the assembly in [the CPU_SPINWAIT
macro] isn't correct anyway (as @marxin points out): the setting of the
program-priority register is "sticky", and we never undo the lowering.
We could do something similar, but given that we don't have testing here in the
first place, I'm inclined to simply not try. I'll put something up reverting the
problematic commit tomorrow.
[1] Book II, chapter 3 of the 2.07B or 3.0B ISA documents.
The configure.ac seciton right now is the same for Linux and kFreeBSD,
which results into an incorrect configuration of e.g. defining
JEMALLOC_PROC_SYS_VM_OVERCOMMIT_MEMORY instead of FreeBSD's
JEMALLOC_SYSCTL_VM_OVERCOMMIT.
GNU/kFreeBSD is really a glibc + FreeBSD kernel system, so it needs its
own entry which has a mixture of configuration options from Linux and
FreeBSD.
Currently, the log macro requires at least one argument after the format string,
because of the way the preprocessor handles varargs macros. We can hide some of
that irritation by pushing the extra arguments into a varargs function.
Added opt.background_thread to enable background threads, which handles purging
currently. When enabled, decay ticks will not trigger purging (which will be
left to the background threads). We limit the max number of threads to NCPUs.
When percpu arena is enabled, set CPU affinity for the background threads as
well.
The sleep interval of background threads is dynamic and determined by computing
number of pages to purge in the future (based on backlog).
Rather than using a manually maintained list of internal symbols to
drive name mangling, add a compilation phase to automatically extract
the list of internal symbols.
This resolves#677.
Add the extent_destroy_t extent destruction hook to extent_hooks_t, and
use it during arena destruction. This hook explicitly communicates to
the callee that the extent must be destroyed or tracked for later reuse,
lest it be permanently leaked. Prior to this change, retained extents
could unintentionally be leaked if extent retention was enabled.
This resolves#560.
Control use of munmap(2) via a run-time option rather than a
compile-time option (with the same per platform default). The old
behavior of --disable-munmap can be achieved with
--with-malloc-conf=munmap:false.
This partially resolves#580.
The explicit compiler warning suppression controlled by this option is
universally desirable, so remove the ability to disable suppression.
This partially resolves#580.
Four size classes per size doubling has proven to be a universally good
choice for the entire 4.x release series, so there's little point to
preserving this configurability.
This partially resolves#580.
This can catch bugs in which one header defines a numeric constant, and another
uses it without including the defining header. Undefined preprocessor symbols
expand to '0', so that this will compile fine, silently doing the math wrong.
Continue to use ivsalloc() when --enable-debug is specified (and add
assertions to guard against 0 size), but stop providing a documented
explicit semantics-changing band-aid to dodge undefined behavior in
sallocx() and malloc_usable_size(). ivsalloc() remains compiled in,
unlike when #211 restored --enable-ivsalloc, and if
JEMALLOC_FORCE_IVSALLOC is defined during compilation, sallocx() and
malloc_usable_size() will still use ivsalloc().
This partially resolves#580.
Simplify configuration by removing the --disable-tcache option, but
replace the testing for that configuration with
--with-malloc-conf=tcache:false.
Fix the thread.arena and thread.tcache.flush mallctls to work correctly
if tcache is disabled.
This partially resolves#580.
This is a biggy. jemalloc_internal.h has been doing multiple jobs for a while
now:
- The source of system-wide definitions.
- The catch-all include file.
- The module header file for jemalloc.c
This commit splits up this functionality. The system-wide definitions
responsibility has moved to jemalloc_preamble.h. The catch-all include file is
now jemalloc_internal_includes.h. The module headers for jemalloc.c are now in
jemalloc_internal_[externs|inlines|types].h, just as they are for the other
modules.
Hyper-threaded CPUs may need a special instruction inside spin loops in
order to yield to another virtual CPU. The 'pause' instruction that is
available for x86 is not supported on Power.
Apparently the extended mnemonics like yield, mdoio, and mdoom are not
actually implemented on POWER8, although mentioned in the ISA 2.07
document. The recommended magic bits are an 'or 31,31,31'.
The new feature, opt.percpu_arena, determines thread-arena association
dynamically based CPU id. Three modes are supported: "percpu", "phycpu"
and disabled.
"percpu" uses the current core id (with help from sched_getcpu())
directly as the arena index, while "phycpu" will assign threads on the
same physical CPU to the same arena. In other words, "percpu" means # of
arenas == # of CPUs, while "phycpu" has # of arenas == 1/2 * (# of
CPUs). Note that no runtime check on whether hyper threading is enabled
is added yet.
When enabled, threads will be migrated between arenas when a CPU change
is detected. In the current design, to reduce overhead from reading CPU
id, each arena tracks the thread accessed most recently. When a new
thread comes in, we will read CPU id and update arena if necessary.
This introduces a backport of C11 atomics. It has four implementations; ranked
in order of preference, they are:
- GCC/Clang __atomic builtins
- GCC/Clang __sync builtins
- MSVC _Interlocked builtins
- C11 atomics, from <stdatomic.h>
The primary advantages are:
- Close adherence to the standard API gives us a defined memory model.
- Type safety: atomic objects are now separate types from non-atomic ones, so
that it's impossible to mix up atomic and non-atomic updates (which is
undefined behavior that compilers are starting to take advantage of).
- Efficiency: we can specify ordering for operations, avoiding fences and
atomic operations on strongly ordered architectures (example:
`atomic_write_u32(ptr, val);` involves a CAS loop, whereas
`atomic_store(ptr, val, ATOMIC_RELEASE);` is a plain store.
This diff leaves in the current atomics API (implementing them in terms of the
backport). This lets us transition uses over piecemeal.
Testing:
This is by nature hard to test. I've manually tested the first three options on
Linux on gcc by futzing with the #defines manually, on freebsd with gcc and
clang, on MSVC, and on OS X with clang. All of these were x86 machines though,
and we don't have any test infrastructure set up for non-x86 platforms.
Rather than dynamically building a table to aid per level computations,
define a constant table at compile time. Omit both high and low
insignificant bits. Use one to three tree levels, depending on the
number of significant bits.
The SDK jemalloc is built against might be not be the latest for various
reasons, but the resulting binary ought to work on newer versions of
OSX.
In order to ensure this, we need the fullest definitions possible, so
copy what we need from the latest version of malloc/malloc.h available
on opensource.apple.com.
Add the --with-lg-hugepage configure option, but automatically configure
LG_HUGEPAGE even if it isn't specified.
Add the pages_[no]huge() functions, which toggle huge page state via
madvise(..., MADV_[NO]HUGEPAGE) calls.
Convert CFLAGS/CXXFLAGS to be concatenations:
CFLAGS := CONFIGURE_CFLAGS SPECIFIED_CFLAGS EXTRA_CFLAGS
CXXFLAGS := CONFIGURE_CXXFLAGS SPECIFIED_CXXFLAGS EXTRA_CXXFLAGS
This ordering makes it possible to override the flags set by the
configure script both during and after configuration, with
CFLAGS/CXXFLAGS and EXTRA_CFLAGS/EXTRA_CXXFLAGS, respectively.
This resolves#504.
Adds cpp bindings for jemalloc, along with necessary autoconf settings.
This is mostly to add sized deallocation support, which can't be added
from C directly. Sized deallocation is ~10% microbench improvement.
* Import ax_cxx_compile_stdcxx.m4 from the autoconf repo, seems like the
easiest way to get c++14 detection.
* Adds various other changes, like CXXFLAGS, to configure.ac.
* Adds new rules to Makefile.in for src/jemalloc-cpp.cpp, and a basic
unittest.
* Both new and delete are overridden, to ensure jemalloc is used for
both.
* TODO future enhancement of avoiding extra PLT thunks for new and
delete - sdallocx and malloc are publicly exported jemalloc symbols,
using an alias would link them directly. Unfortunately, was having
trouble getting it to play nice with jemalloc's namespace support.
Testing:
Tested gcc 4.8, gcc 5, gcc 5.2, clang 4.0. Only gcc >= 5 has sized
deallocation support, verified that the rest build correctly.
Tested mac osx and Centos.
Tested --with-jemalloc-prefix and --without-export.
This resolves#202.
The core issue here is the weak linking of the symbol, and in certain
environments--for instance, using the latest Xcode (8.1) with the latest
SDK (10.12)--os_unfair_lock may resolve even though you're compiling on
a host that doesn't support it (10.11).
We can use the availability macros to circumvent this problem, and
detect that we're not compiling for a target that is going to support
them and error out at compile time. The other alternative is to do a
runtime check, but that presents issues for cross-compiling.
Some versions of Android provide a pthreads library without providing
pthread_atfork(), so in practice a separate feature test is necessary
for the latter.
Add feature tests for the MADV_FREE and MADV_DONTNEED flags to
madvise(2), so that MADV_FREE is detected and used for Linux kernel
versions 4.5 and newer. Refactor pages_purge() so that on systems which
support both flags, MADV_FREE is preferred over MADV_DONTNEED.
This resolves#387.
The raw clock variant is slow (even relative to plain CLOCK_MONOTONIC),
whereas the coarse clock variant is faster than CLOCK_MONOTONIC, but
still has resolution (~1ms) that is adequate for our purposes.
This resolves#479.
Conditionalize use of --whole-archive on the platform plus compiler,
rather than on the ABI. This fixes a regression caused by
7b24c6e557 (Use --whole-archive when
linking integration tests on MinGW.).
This reverts 13473c7c66, which was
intended to work around bootstrapping issues when linking statically.
However, this actually causes problems in various other configurations,
so this reversion may force a future fix for the underlying problem, if
it still exists.
Add missing #include <time.h>. The critical time facilities appear to
have been transitively included via unistd.h and sys/time.h, but in
principle this omission was capable of having caused
clock_gettime(CLOCK_MONOTONIC, ...) to have been overlooked in favor of
gettimeofday(), which in turn could cause spurious non-monotonic time
updates.
Refactor nstime_get() out of nstime_update() and add configure tests for
all variants.
Add CLOCK_MONOTONIC_RAW support (Linux-specific) and
mach_absolute_time() support (OS X-specific).
Do not fall back to clock_gettime(CLOCK_REALTIME, ...). This was a
fragile Linux-specific workaround, which we're unlikely to use at all
now that clock_gettime(CLOCK_MONOTONIC_RAW, ...) is supported, and if we
have no choice besides non-monotonic clocks, gettimeofday() is only
incrementally worse.
In 1167e9e, I accidentally tested je_cv_gcc_builtin_ffsl instead of
je_cv_gcc_builtin_unreachable (copy-paste error), which meant that
JEMALLOC_INTERNAL_UNREACHABLE was always getting defined as abort even if
__builtin_unreachable support was detected.
Cray is pretty warning-happy, so disable ones that aren't helpful. Each warning
has a numeric value instead of having named flags to disable specific warnings.
Disable warnings 128 and 1357.
128: Ignore unreachable code warning. Cray warns about `not_reached()` not
being reachable in a couple of places because it detects that some loops
will never terminate.
1357: Ignore warning about redefinition of malloc and friends
With this patch, Cray 8.4.0 and 8.5.1 build cleanly and pass `make check`
Cray uses -herror_on_warning instead of -Werror. Use it everywhere -Werror is
currently used for __attribute__ checks so configure actually detects they're
not supported.
Cray only supports `-M` for generating dependency files. It does not support
`-MM` or `-MT`, so don't try to use them. I just reused the existing mechanism
for turning auto-dependency generation off (`CC_MM=`), but it might be more
principled to add a configure test to check if the compiler supports `-MM` and
`-MT`, instead of manually tracking which compilers don't support those flags.
Get jemalloc building and passing `make check_unit` with cray 8.4. An inlining
bug in 8.4 results in internal errors while trying to build jemalloc. This has
already been reported and fixed for the 8.5 release.
In order to work around the inlining bug, disable gnu compatibility and limit
ipa optimizations.
I copied the msvc compiler check for cray, but note that we perform the test
even if we think we're using gcc because cray pretends to be gcc if `-hgnu`
(which is enabled by default) is used. I couldn't come up with a principled way
to check for the inlining bug, so instead I just checked compiler versions.
The build had lots of warnings I need to address and cray doesn't support -MM
or -MT for dependency tracking, so I had to do `make CC_MM=`.