This diff adds a fastpath that assumes size <= SC_LOOKUP_MAXCLASS, and
that we hit tcache. If either of these is false, we fall back to
the previous codepath (renamed 'malloc_default').
Crucially, we only tail call malloc_default, and with the same kind
and number of arguments, so that both clang and gcc tail-calling
will kick in - therefore malloc() gets treated as a leaf function,
and there are *no* caller-saved registers. Previously malloc() contained
5 caller saved registers on x64, resulting in at least 10 extra
memory-movement instructions.
In microbenchmarks this results in up to ~10% improvement in malloc()
fastpath. In real programs, this is a ~1% CPU and latency improvement
overall.
The experimental `smallocx` API is not exposed via header files,
requiring the users to peek at `jemalloc`'s source code to manually
add the external declarations to their own programs.
This should reinforce that `smallocx` is experimental, and that `jemalloc`
does not offer any kind of backwards compatiblity or ABI gurantees for it.
---
Motivation:
This new experimental memory-allocaction API returns a pointer to
the allocation as well as the usable size of the allocated memory
region.
The `s` in `smallocx` stands for `sized`-`mallocx`, attempting to
convey that this API returns the size of the allocated memory region.
It should allow C++ P0901r0 [0] and Rust Alloc::alloc_excess to make
use of it.
The main purpose of these APIs is to improve telemetry. It is more accurate
to register `smallocx(size, flags)` than `smallocx(nallocx(size), flags)`,
for example. The latter will always line up perfectly with the existing
size classes, causing a loss of telemetry information about the internal
fragmentation induced by potentially poor size-classes choices.
Instrumenting `nallocx` does not help much since user code can cache its
result and use it repeatedly.
---
Implementation:
The implementation adds a new `usize` option to `static_opts_s` and an `usize`
variable to `dynamic_opts_s`. These are then used to cache the result of
`sz_index2size` and similar functions in the code paths in which they are
unconditionally invoked. In the code-paths in which these functions are not
unconditionally invoked, `smallocx` calls, as opposed to `mallocx`, these
functions explicitly.
---
[0]: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0901r0.html
generation of sub bytes_until_sample, usize; je; for x86 arch.
Subtraction is unconditional, and only flags are checked for the jump,
no extra compare is necessary. This also reduces register pressure.
If we assume SC_LARGE_MAXCLASS will always fit in a SSIZE_T, then we can
optimize some checks by unconditional subtraction, and then checking flags
only, without a compare statement in x86.
in case `malloc_read_fd` returns a negative error number, the result
would afterwards be casted to an unsigned size_t, and may have
theoretically caused an out-of-bounds memory access in the following
`strncmp` call.
This makes it directly use MAP_EXCL and MAP_ALIGNED() instead
of weird workarounds involving mapping at random places and then
unmapping parts of them.
- Make API more clear for using as standalone json emitter
- Support cases that weren't possible before, e.g.
- emitting primitive values in an array
- emitting nested arrays
In case of multithreaded fork, we want to leave the child in a reasonable state,
in which tsd_nominal_tsds is either empty or contains only the forking thread.
The global data is mostly only used at initialization, or for easy access to
values we could compute statically. Instead of consuming that space (and
risking TLB misses), we can just pass around a pointer to stack data during
bootstrapping.
The largest small class, smallest large class, and largest large class may all
be needed down fast paths; to avoid the risk of touching another cache line, we
can make them available as constants.
I.e., parse before booting the bin module or sz module. This lets us tweak size
class settings before committing to them by letting them leak into other
modules.
This commit does not actually do any tweaking of the size classes; it *just*
chanchanges bootstrapping order; this may help bisecting any bootstrapping
failures on poorly-tested architectures.
This is the last big step in making size classes a runtime computation rather
than a configure-time one.
The compile-time computation has been left in, for now, to allow assertion
checking that the results are identical.
This class removes almost all the dependencies on size_classes.h, accessing the
data there only via the new module sc.h, which does not depend on any
configuration options.
In a subsequent commit, we'll remove the configure-time size class computations,
doing them at boot time, instead.
Before this commit jemalloc produced many warnings when compiled with -Wextra
with both Clang and GCC. This commit fixes the issues raised by these warnings
or suppresses them if they were spurious at least for the Clang and GCC
versions covered by CI.
This commit:
* adds `JEMALLOC_DIAGNOSTIC` macros: `JEMALLOC_DIAGNOSTIC_{PUSH,POP}` are
used to modify the stack of enabled diagnostics. The
`JEMALLOC_DIAGNOSTIC_IGNORE_...` macros are used to ignore a concrete
diagnostic.
* adds `JEMALLOC_FALLTHROUGH` macro to explicitly state that falling
through `case` labels in a `switch` statement is intended
* Removes all UNUSED annotations on function parameters. The warning
-Wunused-parameter is now disabled globally in
`jemalloc_internal_macros.h` for all translation units that include
that header. It is never re-enabled since that header cannot be
included by users.
* locally suppresses some -Wextra diagnostics:
* `-Wmissing-field-initializer` is buggy in older Clang and GCC versions,
where it does not understanding that, in C, `= {0}` is a common C idiom
to initialize a struct to zero
* `-Wtype-bounds` is suppressed in a particular situation where a generic
macro, used in multiple different places, compares an unsigned integer for
smaller than zero, which is always true.
* `-Walloc-larger-than-size=` diagnostics warn when an allocation function is
called with a size that is too large (out-of-range). These are suppressed in
the parts of the tests where `jemalloc` explicitly does this to test that the
allocation functions fail properly.
* adds a new CI build bot that runs the log unit test on CI.
Closes#1196 .
The feature allows using a dedicated arena for huge allocations. We want the
addtional arena to separate huge allocation because: 1) mixing small extents
with huge ones causes fragmentation over the long run (this feature reduces VM
size significantly); 2) with many arenas, huge extents rarely get reused across
threads; and 3) huge allocations happen way less frequently, therefore no
concerns for lock contention.
Previously, we made the user deal with this themselves, but that's not good
enough; if hooks may allocate, we should test the allocation pathways down
hooks. If we're doing that, we might as well actually implement the protection
for the user.