This is the first step towards breaking up the tcache and arena (since they
interact primarily at the bin level). It should also make a future arena
caching implementation more straightforward.
As part of the metadata_thp support, We now have a separate swtich
(JEMALLOC_HAVE_MADVISE_HUGE) for MADV_HUGEPAGE availability. Use that instead
of JEMALLOC_THP (which doesn't guard pages_huge anymore) in tests.
The external linkage for spin_adaptive was not used, and the inline
declaration of spin_adaptive that was used caused a probem on FreeBSD
where CPU_SPINWAIT is implemented as a call to a static procedure for
x86 architectures.
Currently we have to log by writing something like:
static log_var_t log_a_b_c = LOG_VAR_INIT("a.b.c");
log (log_a_b_c, "msg");
This is sort of annoying. Let's just write:
log("a.b.c", "msg");
Currently, the log macro requires at least one argument after the format string,
because of the way the preprocessor handles varargs macros. We can hide some of
that irritation by pushing the extra arguments into a varargs function.
Passing is_background_thread down the decay path, so that background thread
itself won't attempt inactivity_check. This fixes an issue with background
thread doing trylock on a mutex it already owns.
We use the minimal_initilized tsd (which requires no cleanup) for free()
specifically, if tsd hasn't been initialized yet.
Any other activity will transit the state from minimal to normal. This is to
workaround the case where a thread has no malloc calls in its lifetime until
during thread termination, free() happens after tls destructors.
To avoid complications, avoid invoking pthread_create "internally", instead rely
on thread0 to launch new threads, and also terminating threads when asked.
Avoid holding arenas_lock and background_thread_lock when creating background
threads, because pthread_create may take internal locks, and potentially cause
deadlock with jemalloc internal locks.
Fix management of extent_grow_next to serialize operations that may grow
retained memory. This assures that the sizes of the newly allocated
extents correspond to the size classes in the intended growth sequence.
Fix management of extent_grow_next to skip size classes if a request is
too large to be satisfied by the next size in the growth sequence. This
avoids the potential for an arbitrary number of requests to bypass
triggering extent_grow_next increases.
This resolves#858.
When # of dirty pages move below npages_limit (e.g. they are reused), we should
not lower number of unpurged pages because that would cause the reused pages to
be double counted in the backlog (as a result, decay happen slower than it
should). Instead, set number of unpurged to the greater of current npages and
npages_limit.
Added an assertion: the ceiling # of pages should be greater than npages_limit.
To avoid background threads sleeping forever with idle arenas, we eagerly check
background threads' sleep time after extents_dalloc, and signal the thread if
necessary.
Added opt.background_thread to enable background threads, which handles purging
currently. When enabled, decay ticks will not trigger purging (which will be
left to the background threads). We limit the max number of threads to NCPUs.
When percpu arena is enabled, set CPU affinity for the background threads as
well.
The sleep interval of background threads is dynamic and determined by computing
number of pages to purge in the future (based on backlog).
Instead of embedding a lock bit in rtree leaf elements, we associate extents
with a small set of mutexes. This gets us two things:
- We can use the system mutexes. This (hypothetically) protects us from
priority inversion, and lets us stop doing a backoff/sleep loop, instead
opting for precise wakeups from the mutex.
- Cuts down on the number of mutex acquisitions we have to do (from 4 in the
worst case to two).
We end up simplifying most of the rtree code (which no longer has to deal with
locking or concurrency at all), at the cost of additional complexity in the
extent code: since the mutex protecting the rtree leaf elements is determined by
reading the extent out of those elements, the initial read is racy, so that we
may acquire an out of date mutex. We re-check the extent in the leaf after
acquiring the mutex to protect us from this race.
This lets us specify whether and how mutexes of the same rank are allowed to be
acquired. Currently, we only allow two polices (only a single mutex at a given
rank at a time, and mutexes acquired in ascending order), but we can plausibly
allow more (e.g. the "release uncontended mutexes before blocking").
Support millisecond resolution for decay times. Among other use cases
this makes it possible to specify a short initial dirty-->muzzy decay
phase, followed by a longer muzzy-->clean decay phase.
This resolves#812.