- Make API more clear for using as standalone json emitter
- Support cases that weren't possible before, e.g.
- emitting primitive values in an array
- emitting nested arrays
In case of multithreaded fork, we want to leave the child in a reasonable state,
in which tsd_nominal_tsds is either empty or contains only the forking thread.
The global data is mostly only used at initialization, or for easy access to
values we could compute statically. Instead of consuming that space (and
risking TLB misses), we can just pass around a pointer to stack data during
bootstrapping.
The largest small class, smallest large class, and largest large class may all
be needed down fast paths; to avoid the risk of touching another cache line, we
can make them available as constants.
I.e., parse before booting the bin module or sz module. This lets us tweak size
class settings before committing to them by letting them leak into other
modules.
This commit does not actually do any tweaking of the size classes; it *just*
chanchanges bootstrapping order; this may help bisecting any bootstrapping
failures on poorly-tested architectures.
This is the last big step in making size classes a runtime computation rather
than a configure-time one.
The compile-time computation has been left in, for now, to allow assertion
checking that the results are identical.
This class removes almost all the dependencies on size_classes.h, accessing the
data there only via the new module sc.h, which does not depend on any
configuration options.
In a subsequent commit, we'll remove the configure-time size class computations,
doing them at boot time, instead.
Before this commit jemalloc produced many warnings when compiled with -Wextra
with both Clang and GCC. This commit fixes the issues raised by these warnings
or suppresses them if they were spurious at least for the Clang and GCC
versions covered by CI.
This commit:
* adds `JEMALLOC_DIAGNOSTIC` macros: `JEMALLOC_DIAGNOSTIC_{PUSH,POP}` are
used to modify the stack of enabled diagnostics. The
`JEMALLOC_DIAGNOSTIC_IGNORE_...` macros are used to ignore a concrete
diagnostic.
* adds `JEMALLOC_FALLTHROUGH` macro to explicitly state that falling
through `case` labels in a `switch` statement is intended
* Removes all UNUSED annotations on function parameters. The warning
-Wunused-parameter is now disabled globally in
`jemalloc_internal_macros.h` for all translation units that include
that header. It is never re-enabled since that header cannot be
included by users.
* locally suppresses some -Wextra diagnostics:
* `-Wmissing-field-initializer` is buggy in older Clang and GCC versions,
where it does not understanding that, in C, `= {0}` is a common C idiom
to initialize a struct to zero
* `-Wtype-bounds` is suppressed in a particular situation where a generic
macro, used in multiple different places, compares an unsigned integer for
smaller than zero, which is always true.
* `-Walloc-larger-than-size=` diagnostics warn when an allocation function is
called with a size that is too large (out-of-range). These are suppressed in
the parts of the tests where `jemalloc` explicitly does this to test that the
allocation functions fail properly.
* adds a new CI build bot that runs the log unit test on CI.
Closes#1196 .
The feature allows using a dedicated arena for huge allocations. We want the
addtional arena to separate huge allocation because: 1) mixing small extents
with huge ones causes fragmentation over the long run (this feature reduces VM
size significantly); 2) with many arenas, huge extents rarely get reused across
threads; and 3) huge allocations happen way less frequently, therefore no
concerns for lock contention.
Previously, we made the user deal with this themselves, but that's not good
enough; if hooks may allocate, we should test the allocation pathways down
hooks. If we're doing that, we might as well actually implement the protection
for the user.
The hook module allows a low-reader-overhead way of finding hooks to invoke and
calling them.
For now, none of the allocation pathways are tied into the hooks; this will come
later.
"Hooks" is really the best name for the module that will contain the publicly
exposed hooks. So lets rename the current "hooks" module (that hook external
dependencies, for reentrancy testing) to "test_hooks".
When configured with --with-lg-page, it's possible for the configured page size
to be greater than the system page size, in which case the page address may only
be aligned with the system page size.
Previously, we would leak the extent and memory associated with a salvageable
portion of an extent that we were trying to split in three, in the case where
the first split attempt succeeded and the second failed.
Looking at the thread counts in our services, jemalloc's background thread
is useful, but mostly idle. Add a config option to tune down the number of threads.
preserve_lru feature adds lots of complication, for little value.
Removing it means merged extents are re-added to the lru list, and may
take longer to madvise away than they otherwise would.
Canaries after removal seem flat for several services (no change).
"always" marks all user mappings as MADV_HUGEPAGE; while "never" marks all
mappings as MADV_NOHUGEPAGE. The default setting "default" does not change any
settings. Note that all the madvise calls are part of the default extent hooks
by design, so that customized extent hooks have complete control over the
mappings including hugepage settings.
We have a buffer overrun that manifests in the case where arena indices higher
than the number of CPUs are accessed before arena indices lower than the number
of CPUs. This fixes the bug and adds a test.
On glibc and Android's bionic, strerror_r returns char* when
_GNU_SOURCE is defined.
Add a configure check for this rather than assume glibc is the
only libc that behaves this way.
We compute the max size required to satisfy an alignment. However this can be
quite pessimistic, especially with frequent reuse (and combined with state-based
fragmentation). This commit adds one more fit step specific to aligned
allocations, searching in all potential fit size classes.
The arena-associated stats are now all prefixed with arena_stats_, and live in
their own file. Likewise, malloc_bin_stats_t -> bin_stats_t, also in its own
file.
When purging, large allocations are usually the ones that cross the npages_limit
threshold, simply because they are "large". This means we often leave the large
extent around for a while, which has the downsides of: 1) high RSS and 2) more
chance of them getting fragmented. Given that they are not likely to be reused
very soon (LRU), let's over purge by 1 extent (which is often large and not
reused frequently).