#include "jemalloc/internal/jemalloc_preamble.h" #include "jemalloc/internal/jemalloc_internal_includes.h" #include "jemalloc/internal/assert.h" #include "jemalloc/internal/decay.h" #include "jemalloc/internal/div.h" #include "jemalloc/internal/ehooks.h" #include "jemalloc/internal/extent_dss.h" #include "jemalloc/internal/extent_mmap.h" #include "jemalloc/internal/mutex.h" #include "jemalloc/internal/rtree.h" #include "jemalloc/internal/safety_check.h" #include "jemalloc/internal/util.h" JEMALLOC_DIAGNOSTIC_DISABLE_SPURIOUS /******************************************************************************/ /* Data. */ /* * Define names for both unininitialized and initialized phases, so that * options and mallctl processing are straightforward. */ const char *percpu_arena_mode_names[] = { "percpu", "phycpu", "disabled", "percpu", "phycpu" }; percpu_arena_mode_t opt_percpu_arena = PERCPU_ARENA_DEFAULT; ssize_t opt_dirty_decay_ms = DIRTY_DECAY_MS_DEFAULT; ssize_t opt_muzzy_decay_ms = MUZZY_DECAY_MS_DEFAULT; static atomic_zd_t dirty_decay_ms_default; static atomic_zd_t muzzy_decay_ms_default; emap_t arena_emap_global; const uint64_t h_steps[SMOOTHSTEP_NSTEPS] = { #define STEP(step, h, x, y) \ h, SMOOTHSTEP #undef STEP }; static div_info_t arena_binind_div_info[SC_NBINS]; size_t opt_oversize_threshold = OVERSIZE_THRESHOLD_DEFAULT; size_t oversize_threshold = OVERSIZE_THRESHOLD_DEFAULT; static unsigned huge_arena_ind; /******************************************************************************/ /* * Function prototypes for static functions that are referenced prior to * definition. */ static bool arena_decay_dirty(tsdn_t *tsdn, arena_t *arena, bool is_background_thread, bool all); static void arena_bin_lower_slab(tsdn_t *tsdn, arena_t *arena, edata_t *slab, bin_t *bin); /******************************************************************************/ void arena_basic_stats_merge(tsdn_t *tsdn, arena_t *arena, unsigned *nthreads, const char **dss, ssize_t *dirty_decay_ms, ssize_t *muzzy_decay_ms, size_t *nactive, size_t *ndirty, size_t *nmuzzy) { *nthreads += arena_nthreads_get(arena, false); *dss = dss_prec_names[arena_dss_prec_get(arena)]; *dirty_decay_ms = arena_decay_ms_get(arena, extent_state_dirty); *muzzy_decay_ms = arena_decay_ms_get(arena, extent_state_muzzy); pa_shard_basic_stats_merge(&arena->pa_shard, nactive, ndirty, nmuzzy); } void arena_stats_merge(tsdn_t *tsdn, arena_t *arena, unsigned *nthreads, const char **dss, ssize_t *dirty_decay_ms, ssize_t *muzzy_decay_ms, size_t *nactive, size_t *ndirty, size_t *nmuzzy, arena_stats_t *astats, bin_stats_data_t *bstats, arena_stats_large_t *lstats, pac_estats_t *estats) { cassert(config_stats); arena_basic_stats_merge(tsdn, arena, nthreads, dss, dirty_decay_ms, muzzy_decay_ms, nactive, ndirty, nmuzzy); size_t base_allocated, base_resident, base_mapped, metadata_thp; base_stats_get(tsdn, arena->base, &base_allocated, &base_resident, &base_mapped, &metadata_thp); size_t pac_mapped_sz = pac_mapped(&arena->pa_shard.pac); astats->mapped += base_mapped + pac_mapped_sz; astats->resident += base_resident; LOCKEDINT_MTX_LOCK(tsdn, arena->stats.mtx); astats->base += base_allocated; atomic_load_add_store_zu(&astats->internal, arena_internal_get(arena)); astats->metadata_thp += metadata_thp; for (szind_t i = 0; i < SC_NSIZES - SC_NBINS; i++) { uint64_t nmalloc = locked_read_u64(tsdn, LOCKEDINT_MTX(arena->stats.mtx), &arena->stats.lstats[i].nmalloc); locked_inc_u64_unsynchronized(&lstats[i].nmalloc, nmalloc); astats->nmalloc_large += nmalloc; uint64_t ndalloc = locked_read_u64(tsdn, LOCKEDINT_MTX(arena->stats.mtx), &arena->stats.lstats[i].ndalloc); locked_inc_u64_unsynchronized(&lstats[i].ndalloc, ndalloc); astats->ndalloc_large += ndalloc; uint64_t nrequests = locked_read_u64(tsdn, LOCKEDINT_MTX(arena->stats.mtx), &arena->stats.lstats[i].nrequests); locked_inc_u64_unsynchronized(&lstats[i].nrequests, nmalloc + nrequests); astats->nrequests_large += nmalloc + nrequests; /* nfill == nmalloc for large currently. */ locked_inc_u64_unsynchronized(&lstats[i].nfills, nmalloc); astats->nfills_large += nmalloc; uint64_t nflush = locked_read_u64(tsdn, LOCKEDINT_MTX(arena->stats.mtx), &arena->stats.lstats[i].nflushes); locked_inc_u64_unsynchronized(&lstats[i].nflushes, nflush); astats->nflushes_large += nflush; assert(nmalloc >= ndalloc); assert(nmalloc - ndalloc <= SIZE_T_MAX); size_t curlextents = (size_t)(nmalloc - ndalloc); lstats[i].curlextents += curlextents; astats->allocated_large += curlextents * sz_index2size(SC_NBINS + i); } pa_shard_stats_merge(tsdn, &arena->pa_shard, &astats->pa_shard_stats, estats, &astats->resident); LOCKEDINT_MTX_UNLOCK(tsdn, arena->stats.mtx); /* tcache_bytes counts currently cached bytes. */ astats->tcache_bytes = 0; malloc_mutex_lock(tsdn, &arena->tcache_ql_mtx); cache_bin_array_descriptor_t *descriptor; ql_foreach(descriptor, &arena->cache_bin_array_descriptor_ql, link) { for (szind_t i = 0; i < nhbins; i++) { cache_bin_t *cache_bin = &descriptor->bins[i]; astats->tcache_bytes += cache_bin_ncached_get(cache_bin, &tcache_bin_info[i]) * sz_index2size(i); } } malloc_mutex_prof_read(tsdn, &astats->mutex_prof_data[arena_prof_mutex_tcache_list], &arena->tcache_ql_mtx); malloc_mutex_unlock(tsdn, &arena->tcache_ql_mtx); #define READ_ARENA_MUTEX_PROF_DATA(mtx, ind) \ malloc_mutex_lock(tsdn, &arena->mtx); \ malloc_mutex_prof_read(tsdn, &astats->mutex_prof_data[ind], \ &arena->mtx); \ malloc_mutex_unlock(tsdn, &arena->mtx); /* Gather per arena mutex profiling data. */ READ_ARENA_MUTEX_PROF_DATA(large_mtx, arena_prof_mutex_large); READ_ARENA_MUTEX_PROF_DATA(base->mtx, arena_prof_mutex_base); #undef READ_ARENA_MUTEX_PROF_DATA pa_shard_mtx_stats_read(tsdn, &arena->pa_shard, astats->mutex_prof_data); nstime_copy(&astats->uptime, &arena->create_time); nstime_update(&astats->uptime); nstime_subtract(&astats->uptime, &arena->create_time); for (szind_t i = 0; i < SC_NBINS; i++) { for (unsigned j = 0; j < bin_infos[i].n_shards; j++) { bin_stats_merge(tsdn, &bstats[i], &arena->bins[i].bin_shards[j]); } } } void arena_handle_new_dirty_pages(tsdn_t *tsdn, arena_t *arena) { witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn), WITNESS_RANK_CORE, 0); if (arena_decay_ms_get(arena, extent_state_dirty) == 0) { arena_decay_dirty(tsdn, arena, false, true); } else { arena_background_thread_inactivity_check(tsdn, arena, false); } } static void * arena_slab_reg_alloc(edata_t *slab, const bin_info_t *bin_info) { void *ret; slab_data_t *slab_data = edata_slab_data_get(slab); size_t regind; assert(edata_nfree_get(slab) > 0); assert(!bitmap_full(slab_data->bitmap, &bin_info->bitmap_info)); regind = bitmap_sfu(slab_data->bitmap, &bin_info->bitmap_info); ret = (void *)((uintptr_t)edata_addr_get(slab) + (uintptr_t)(bin_info->reg_size * regind)); edata_nfree_dec(slab); return ret; } static void arena_slab_reg_alloc_batch(edata_t *slab, const bin_info_t *bin_info, unsigned cnt, void** ptrs) { slab_data_t *slab_data = edata_slab_data_get(slab); assert(edata_nfree_get(slab) >= cnt); assert(!bitmap_full(slab_data->bitmap, &bin_info->bitmap_info)); #if (! defined JEMALLOC_INTERNAL_POPCOUNTL) || (defined BITMAP_USE_TREE) for (unsigned i = 0; i < cnt; i++) { size_t regind = bitmap_sfu(slab_data->bitmap, &bin_info->bitmap_info); *(ptrs + i) = (void *)((uintptr_t)edata_addr_get(slab) + (uintptr_t)(bin_info->reg_size * regind)); } #else unsigned group = 0; bitmap_t g = slab_data->bitmap[group]; unsigned i = 0; while (i < cnt) { while (g == 0) { g = slab_data->bitmap[++group]; } size_t shift = group << LG_BITMAP_GROUP_NBITS; size_t pop = popcount_lu(g); if (pop > (cnt - i)) { pop = cnt - i; } /* * Load from memory locations only once, outside the * hot loop below. */ uintptr_t base = (uintptr_t)edata_addr_get(slab); uintptr_t regsize = (uintptr_t)bin_info->reg_size; while (pop--) { size_t bit = cfs_lu(&g); size_t regind = shift + bit; *(ptrs + i) = (void *)(base + regsize * regind); i++; } slab_data->bitmap[group] = g; } #endif edata_nfree_sub(slab, cnt); } #ifndef JEMALLOC_JET static #endif size_t arena_slab_regind(edata_t *slab, szind_t binind, const void *ptr) { size_t diff, regind; /* Freeing a pointer outside the slab can cause assertion failure. */ assert((uintptr_t)ptr >= (uintptr_t)edata_addr_get(slab)); assert((uintptr_t)ptr < (uintptr_t)edata_past_get(slab)); /* Freeing an interior pointer can cause assertion failure. */ assert(((uintptr_t)ptr - (uintptr_t)edata_addr_get(slab)) % (uintptr_t)bin_infos[binind].reg_size == 0); diff = (size_t)((uintptr_t)ptr - (uintptr_t)edata_addr_get(slab)); /* Avoid doing division with a variable divisor. */ regind = div_compute(&arena_binind_div_info[binind], diff); assert(regind < bin_infos[binind].nregs); return regind; } static void arena_slab_reg_dalloc(edata_t *slab, slab_data_t *slab_data, void *ptr) { szind_t binind = edata_szind_get(slab); const bin_info_t *bin_info = &bin_infos[binind]; size_t regind = arena_slab_regind(slab, binind, ptr); assert(edata_nfree_get(slab) < bin_info->nregs); /* Freeing an unallocated pointer can cause assertion failure. */ assert(bitmap_get(slab_data->bitmap, &bin_info->bitmap_info, regind)); bitmap_unset(slab_data->bitmap, &bin_info->bitmap_info, regind); edata_nfree_inc(slab); } static void arena_large_malloc_stats_update(tsdn_t *tsdn, arena_t *arena, size_t usize) { szind_t index, hindex; cassert(config_stats); if (usize < SC_LARGE_MINCLASS) { usize = SC_LARGE_MINCLASS; } index = sz_size2index(usize); hindex = (index >= SC_NBINS) ? index - SC_NBINS : 0; locked_inc_u64(tsdn, LOCKEDINT_MTX(arena->stats.mtx), &arena->stats.lstats[hindex].nmalloc, 1); } static void arena_large_dalloc_stats_update(tsdn_t *tsdn, arena_t *arena, size_t usize) { szind_t index, hindex; cassert(config_stats); if (usize < SC_LARGE_MINCLASS) { usize = SC_LARGE_MINCLASS; } index = sz_size2index(usize); hindex = (index >= SC_NBINS) ? index - SC_NBINS : 0; locked_inc_u64(tsdn, LOCKEDINT_MTX(arena->stats.mtx), &arena->stats.lstats[hindex].ndalloc, 1); } static void arena_large_ralloc_stats_update(tsdn_t *tsdn, arena_t *arena, size_t oldusize, size_t usize) { arena_large_dalloc_stats_update(tsdn, arena, oldusize); arena_large_malloc_stats_update(tsdn, arena, usize); } edata_t * arena_extent_alloc_large(tsdn_t *tsdn, arena_t *arena, size_t usize, size_t alignment, bool zero) { szind_t szind = sz_size2index(usize); size_t esize = usize + sz_large_pad; edata_t *edata = pa_alloc(tsdn, &arena->pa_shard, esize, alignment, /* slab */ false, szind, zero); if (edata != NULL) { if (config_stats) { LOCKEDINT_MTX_LOCK(tsdn, arena->stats.mtx); arena_large_malloc_stats_update(tsdn, arena, usize); LOCKEDINT_MTX_UNLOCK(tsdn, arena->stats.mtx); } } if (edata != NULL && sz_large_pad != 0) { arena_cache_oblivious_randomize(tsdn, arena, edata, alignment); } return edata; } void arena_extent_dalloc_large_prep(tsdn_t *tsdn, arena_t *arena, edata_t *edata) { if (config_stats) { LOCKEDINT_MTX_LOCK(tsdn, arena->stats.mtx); arena_large_dalloc_stats_update(tsdn, arena, edata_usize_get(edata)); LOCKEDINT_MTX_UNLOCK(tsdn, arena->stats.mtx); } } void arena_extent_ralloc_large_shrink(tsdn_t *tsdn, arena_t *arena, edata_t *edata, size_t oldusize) { size_t usize = edata_usize_get(edata); if (config_stats) { LOCKEDINT_MTX_LOCK(tsdn, arena->stats.mtx); arena_large_ralloc_stats_update(tsdn, arena, oldusize, usize); LOCKEDINT_MTX_UNLOCK(tsdn, arena->stats.mtx); } } void arena_extent_ralloc_large_expand(tsdn_t *tsdn, arena_t *arena, edata_t *edata, size_t oldusize) { size_t usize = edata_usize_get(edata); if (config_stats) { LOCKEDINT_MTX_LOCK(tsdn, arena->stats.mtx); arena_large_ralloc_stats_update(tsdn, arena, oldusize, usize); LOCKEDINT_MTX_UNLOCK(tsdn, arena->stats.mtx); } } /* * In situations where we're not forcing a decay (i.e. because the user * specifically requested it), should we purge ourselves, or wait for the * background thread to get to it. */ static pac_purge_eagerness_t arena_decide_unforced_purge_eagerness(bool is_background_thread) { if (is_background_thread) { return PAC_PURGE_ALWAYS; } else if (!is_background_thread && background_thread_enabled()) { return PAC_PURGE_NEVER; } else { return PAC_PURGE_ON_EPOCH_ADVANCE; } } bool arena_decay_ms_set(tsdn_t *tsdn, arena_t *arena, extent_state_t state, ssize_t decay_ms) { pac_purge_eagerness_t eagerness = arena_decide_unforced_purge_eagerness( /* is_background_thread */ false); return pa_decay_ms_set(tsdn, &arena->pa_shard, state, decay_ms, eagerness); } ssize_t arena_decay_ms_get(arena_t *arena, extent_state_t state) { return pa_decay_ms_get(&arena->pa_shard, state); } static bool arena_decay_impl(tsdn_t *tsdn, arena_t *arena, decay_t *decay, pac_decay_stats_t *decay_stats, ecache_t *ecache, bool is_background_thread, bool all) { if (all) { malloc_mutex_lock(tsdn, &decay->mtx); pac_decay_all(tsdn, &arena->pa_shard.pac, decay, decay_stats, ecache, /* fully_decay */ all); malloc_mutex_unlock(tsdn, &decay->mtx); return false; } if (malloc_mutex_trylock(tsdn, &decay->mtx)) { /* No need to wait if another thread is in progress. */ return true; } pac_purge_eagerness_t eagerness = arena_decide_unforced_purge_eagerness(is_background_thread); bool epoch_advanced = pac_maybe_decay_purge(tsdn, &arena->pa_shard.pac, decay, decay_stats, ecache, eagerness); size_t npages_new; if (epoch_advanced) { /* Backlog is updated on epoch advance. */ npages_new = decay_epoch_npages_delta(decay); } malloc_mutex_unlock(tsdn, &decay->mtx); if (have_background_thread && background_thread_enabled() && epoch_advanced && !is_background_thread) { background_thread_interval_check(tsdn, arena, decay, npages_new); } return false; } static bool arena_decay_dirty(tsdn_t *tsdn, arena_t *arena, bool is_background_thread, bool all) { return arena_decay_impl(tsdn, arena, &arena->pa_shard.pac.decay_dirty, &arena->pa_shard.pac.stats->decay_dirty, &arena->pa_shard.pac.ecache_dirty, is_background_thread, all); } static bool arena_decay_muzzy(tsdn_t *tsdn, arena_t *arena, bool is_background_thread, bool all) { if (pa_shard_dont_decay_muzzy(&arena->pa_shard)) { return false; } return arena_decay_impl(tsdn, arena, &arena->pa_shard.pac.decay_muzzy, &arena->pa_shard.pac.stats->decay_muzzy, &arena->pa_shard.pac.ecache_muzzy, is_background_thread, all); } void arena_decay(tsdn_t *tsdn, arena_t *arena, bool is_background_thread, bool all) { if (arena_decay_dirty(tsdn, arena, is_background_thread, all)) { return; } arena_decay_muzzy(tsdn, arena, is_background_thread, all); } void arena_slab_dalloc(tsdn_t *tsdn, arena_t *arena, edata_t *slab) { bool generated_dirty; pa_dalloc(tsdn, &arena->pa_shard, slab, &generated_dirty); if (generated_dirty) { arena_handle_new_dirty_pages(tsdn, arena); } } static void arena_bin_slabs_nonfull_insert(bin_t *bin, edata_t *slab) { assert(edata_nfree_get(slab) > 0); edata_heap_insert(&bin->slabs_nonfull, slab); if (config_stats) { bin->stats.nonfull_slabs++; } } static void arena_bin_slabs_nonfull_remove(bin_t *bin, edata_t *slab) { edata_heap_remove(&bin->slabs_nonfull, slab); if (config_stats) { bin->stats.nonfull_slabs--; } } static edata_t * arena_bin_slabs_nonfull_tryget(bin_t *bin) { edata_t *slab = edata_heap_remove_first(&bin->slabs_nonfull); if (slab == NULL) { return NULL; } if (config_stats) { bin->stats.reslabs++; bin->stats.nonfull_slabs--; } return slab; } static void arena_bin_slabs_full_insert(arena_t *arena, bin_t *bin, edata_t *slab) { assert(edata_nfree_get(slab) == 0); /* * Tracking extents is required by arena_reset, which is not allowed * for auto arenas. Bypass this step to avoid touching the edata * linkage (often results in cache misses) for auto arenas. */ if (arena_is_auto(arena)) { return; } edata_list_active_append(&bin->slabs_full, slab); } static void arena_bin_slabs_full_remove(arena_t *arena, bin_t *bin, edata_t *slab) { if (arena_is_auto(arena)) { return; } edata_list_active_remove(&bin->slabs_full, slab); } static void arena_bin_reset(tsd_t *tsd, arena_t *arena, bin_t *bin) { edata_t *slab; malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock); if (bin->slabcur != NULL) { slab = bin->slabcur; bin->slabcur = NULL; malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock); arena_slab_dalloc(tsd_tsdn(tsd), arena, slab); malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock); } while ((slab = edata_heap_remove_first(&bin->slabs_nonfull)) != NULL) { malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock); arena_slab_dalloc(tsd_tsdn(tsd), arena, slab); malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock); } for (slab = edata_list_active_first(&bin->slabs_full); slab != NULL; slab = edata_list_active_first(&bin->slabs_full)) { arena_bin_slabs_full_remove(arena, bin, slab); malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock); arena_slab_dalloc(tsd_tsdn(tsd), arena, slab); malloc_mutex_lock(tsd_tsdn(tsd), &bin->lock); } if (config_stats) { bin->stats.curregs = 0; bin->stats.curslabs = 0; } malloc_mutex_unlock(tsd_tsdn(tsd), &bin->lock); } void arena_reset(tsd_t *tsd, arena_t *arena) { /* * Locking in this function is unintuitive. The caller guarantees that * no concurrent operations are happening in this arena, but there are * still reasons that some locking is necessary: * * - Some of the functions in the transitive closure of calls assume * appropriate locks are held, and in some cases these locks are * temporarily dropped to avoid lock order reversal or deadlock due to * reentry. * - mallctl("epoch", ...) may concurrently refresh stats. While * strictly speaking this is a "concurrent operation", disallowing * stats refreshes would impose an inconvenient burden. */ /* Large allocations. */ malloc_mutex_lock(tsd_tsdn(tsd), &arena->large_mtx); for (edata_t *edata = edata_list_active_first(&arena->large); edata != NULL; edata = edata_list_active_first(&arena->large)) { void *ptr = edata_base_get(edata); size_t usize; malloc_mutex_unlock(tsd_tsdn(tsd), &arena->large_mtx); emap_alloc_ctx_t alloc_ctx; emap_alloc_ctx_lookup(tsd_tsdn(tsd), &arena_emap_global, ptr, &alloc_ctx); assert(alloc_ctx.szind != SC_NSIZES); if (config_stats || (config_prof && opt_prof)) { usize = sz_index2size(alloc_ctx.szind); assert(usize == isalloc(tsd_tsdn(tsd), ptr)); } /* Remove large allocation from prof sample set. */ if (config_prof && opt_prof) { prof_free(tsd, ptr, usize, &alloc_ctx); } large_dalloc(tsd_tsdn(tsd), edata); malloc_mutex_lock(tsd_tsdn(tsd), &arena->large_mtx); } malloc_mutex_unlock(tsd_tsdn(tsd), &arena->large_mtx); /* Bins. */ for (unsigned i = 0; i < SC_NBINS; i++) { for (unsigned j = 0; j < bin_infos[i].n_shards; j++) { arena_bin_reset(tsd, arena, &arena->bins[i].bin_shards[j]); } } pa_shard_reset(&arena->pa_shard); } void arena_destroy(tsd_t *tsd, arena_t *arena) { assert(base_ind_get(arena->base) >= narenas_auto); assert(arena_nthreads_get(arena, false) == 0); assert(arena_nthreads_get(arena, true) == 0); /* * No allocations have occurred since arena_reset() was called. * Furthermore, the caller (arena_i_destroy_ctl()) purged all cached * extents, so only retained extents may remain and it's safe to call * pa_shard_destroy_retained. */ pa_shard_destroy(tsd_tsdn(tsd), &arena->pa_shard); /* * Remove the arena pointer from the arenas array. We rely on the fact * that there is no way for the application to get a dirty read from the * arenas array unless there is an inherent race in the application * involving access of an arena being concurrently destroyed. The * application must synchronize knowledge of the arena's validity, so as * long as we use an atomic write to update the arenas array, the * application will get a clean read any time after it synchronizes * knowledge that the arena is no longer valid. */ arena_set(base_ind_get(arena->base), NULL); /* * Destroy the base allocator, which manages all metadata ever mapped by * this arena. */ base_delete(tsd_tsdn(tsd), arena->base); } static edata_t * arena_slab_alloc(tsdn_t *tsdn, arena_t *arena, szind_t binind, unsigned binshard, const bin_info_t *bin_info) { witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn), WITNESS_RANK_CORE, 0); edata_t *slab = pa_alloc(tsdn, &arena->pa_shard, bin_info->slab_size, PAGE, /* slab */ true, /* szind */ binind, /* zero */ false); if (slab == NULL) { return NULL; } assert(edata_slab_get(slab)); /* Initialize slab internals. */ slab_data_t *slab_data = edata_slab_data_get(slab); edata_nfree_binshard_set(slab, bin_info->nregs, binshard); bitmap_init(slab_data->bitmap, &bin_info->bitmap_info, false); return slab; } /* * Before attempting the _with_fresh_slab approaches below, the _no_fresh_slab * variants (i.e. through slabcur and nonfull) must be tried first. */ static void arena_bin_refill_slabcur_with_fresh_slab(tsdn_t *tsdn, arena_t *arena, bin_t *bin, szind_t binind, edata_t *fresh_slab) { malloc_mutex_assert_owner(tsdn, &bin->lock); /* Only called after slabcur and nonfull both failed. */ assert(bin->slabcur == NULL); assert(edata_heap_first(&bin->slabs_nonfull) == NULL); assert(fresh_slab != NULL); /* A new slab from arena_slab_alloc() */ assert(edata_nfree_get(fresh_slab) == bin_infos[binind].nregs); if (config_stats) { bin->stats.nslabs++; bin->stats.curslabs++; } bin->slabcur = fresh_slab; } /* Refill slabcur and then alloc using the fresh slab */ static void * arena_bin_malloc_with_fresh_slab(tsdn_t *tsdn, arena_t *arena, bin_t *bin, szind_t binind, edata_t *fresh_slab) { malloc_mutex_assert_owner(tsdn, &bin->lock); arena_bin_refill_slabcur_with_fresh_slab(tsdn, arena, bin, binind, fresh_slab); return arena_slab_reg_alloc(bin->slabcur, &bin_infos[binind]); } static bool arena_bin_refill_slabcur_no_fresh_slab(tsdn_t *tsdn, arena_t *arena, bin_t *bin) { malloc_mutex_assert_owner(tsdn, &bin->lock); /* Only called after arena_slab_reg_alloc[_batch] failed. */ assert(bin->slabcur == NULL || edata_nfree_get(bin->slabcur) == 0); if (bin->slabcur != NULL) { arena_bin_slabs_full_insert(arena, bin, bin->slabcur); } /* Look for a usable slab. */ bin->slabcur = arena_bin_slabs_nonfull_tryget(bin); assert(bin->slabcur == NULL || edata_nfree_get(bin->slabcur) > 0); return (bin->slabcur == NULL); } bin_t * arena_bin_choose(tsdn_t *tsdn, arena_t *arena, szind_t binind, unsigned *binshard_p) { unsigned binshard; if (tsdn_null(tsdn) || tsd_arena_get(tsdn_tsd(tsdn)) == NULL) { binshard = 0; } else { binshard = tsd_binshardsp_get(tsdn_tsd(tsdn))->binshard[binind]; } assert(binshard < bin_infos[binind].n_shards); if (binshard_p != NULL) { *binshard_p = binshard; } return &arena->bins[binind].bin_shards[binshard]; } void arena_cache_bin_fill_small(tsdn_t *tsdn, arena_t *arena, cache_bin_t *cache_bin, cache_bin_info_t *cache_bin_info, szind_t binind, const unsigned nfill) { assert(cache_bin_ncached_get(cache_bin, cache_bin_info) == 0); const bin_info_t *bin_info = &bin_infos[binind]; CACHE_BIN_PTR_ARRAY_DECLARE(ptrs, nfill); cache_bin_init_ptr_array_for_fill(cache_bin, cache_bin_info, &ptrs, nfill); /* * Bin-local resources are used first: 1) bin->slabcur, and 2) nonfull * slabs. After both are exhausted, new slabs will be allocated through * arena_slab_alloc(). * * Bin lock is only taken / released right before / after the while(...) * refill loop, with new slab allocation (which has its own locking) * kept outside of the loop. This setup facilitates flat combining, at * the cost of the nested loop (through goto label_refill). * * To optimize for cases with contention and limited resources * (e.g. hugepage-backed or non-overcommit arenas), each fill-iteration * gets one chance of slab_alloc, and a retry of bin local resources * after the slab allocation (regardless if slab_alloc failed, because * the bin lock is dropped during the slab allocation). * * In other words, new slab allocation is allowed, as long as there was * progress since the previous slab_alloc. This is tracked with * made_progress below, initialized to true to jump start the first * iteration. * * In other words (again), the loop will only terminate early (i.e. stop * with filled < nfill) after going through the three steps: a) bin * local exhausted, b) unlock and slab_alloc returns null, c) re-lock * and bin local fails again. */ bool made_progress = true; edata_t *fresh_slab = NULL; bool alloc_and_retry = false; unsigned filled = 0; unsigned binshard; bin_t *bin = arena_bin_choose(tsdn, arena, binind, &binshard); label_refill: malloc_mutex_lock(tsdn, &bin->lock); while (filled < nfill) { /* Try batch-fill from slabcur first. */ edata_t *slabcur = bin->slabcur; if (slabcur != NULL && edata_nfree_get(slabcur) > 0) { unsigned tofill = nfill - filled; unsigned nfree = edata_nfree_get(slabcur); unsigned cnt = tofill < nfree ? tofill : nfree; arena_slab_reg_alloc_batch(slabcur, bin_info, cnt, &ptrs.ptr[filled]); made_progress = true; filled += cnt; continue; } /* Next try refilling slabcur from nonfull slabs. */ if (!arena_bin_refill_slabcur_no_fresh_slab(tsdn, arena, bin)) { assert(bin->slabcur != NULL); continue; } /* Then see if a new slab was reserved already. */ if (fresh_slab != NULL) { arena_bin_refill_slabcur_with_fresh_slab(tsdn, arena, bin, binind, fresh_slab); assert(bin->slabcur != NULL); fresh_slab = NULL; continue; } /* Try slab_alloc if made progress (or never did slab_alloc). */ if (made_progress) { assert(bin->slabcur == NULL); assert(fresh_slab == NULL); alloc_and_retry = true; /* Alloc a new slab then come back. */ break; } /* OOM. */ assert(fresh_slab == NULL); assert(!alloc_and_retry); break; } /* while (filled < nfill) loop. */ if (config_stats && !alloc_and_retry) { bin->stats.nmalloc += filled; bin->stats.nrequests += cache_bin->tstats.nrequests; bin->stats.curregs += filled; bin->stats.nfills++; cache_bin->tstats.nrequests = 0; } malloc_mutex_unlock(tsdn, &bin->lock); if (alloc_and_retry) { assert(fresh_slab == NULL); assert(filled < nfill); assert(made_progress); fresh_slab = arena_slab_alloc(tsdn, arena, binind, binshard, bin_info); /* fresh_slab NULL case handled in the for loop. */ alloc_and_retry = false; made_progress = false; goto label_refill; } assert(filled == nfill || (fresh_slab == NULL && !made_progress)); /* Release if allocated but not used. */ if (fresh_slab != NULL) { assert(edata_nfree_get(fresh_slab) == bin_info->nregs); arena_slab_dalloc(tsdn, arena, fresh_slab); fresh_slab = NULL; } cache_bin_finish_fill(cache_bin, cache_bin_info, &ptrs, filled); arena_decay_tick(tsdn, arena); } size_t arena_fill_small_fresh(tsdn_t *tsdn, arena_t *arena, szind_t binind, void **ptrs, size_t nfill, bool zero) { assert(binind < SC_NBINS); const bin_info_t *bin_info = &bin_infos[binind]; const size_t nregs = bin_info->nregs; assert(nregs > 0); const size_t usize = bin_info->reg_size; const bool manual_arena = !arena_is_auto(arena); unsigned binshard; bin_t *bin = arena_bin_choose(tsdn, arena, binind, &binshard); size_t nslab = 0; size_t filled = 0; edata_t *slab = NULL; edata_list_active_t fulls; edata_list_active_init(&fulls); while (filled < nfill && (slab = arena_slab_alloc(tsdn, arena, binind, binshard, bin_info)) != NULL) { assert((size_t)edata_nfree_get(slab) == nregs); ++nslab; size_t batch = nfill - filled; if (batch > nregs) { batch = nregs; } assert(batch > 0); arena_slab_reg_alloc_batch(slab, bin_info, (unsigned)batch, &ptrs[filled]); assert(edata_addr_get(slab) == ptrs[filled]); if (zero) { memset(ptrs[filled], 0, batch * usize); } filled += batch; if (batch == nregs) { if (manual_arena) { edata_list_active_append(&fulls, slab); } slab = NULL; } } malloc_mutex_lock(tsdn, &bin->lock); /* * Only the last slab can be non-empty, and the last slab is non-empty * iff slab != NULL. */ if (slab != NULL) { arena_bin_lower_slab(tsdn, arena, slab, bin); } if (manual_arena) { edata_list_active_concat(&bin->slabs_full, &fulls); } assert(edata_list_active_empty(&fulls)); if (config_stats) { bin->stats.nslabs += nslab; bin->stats.curslabs += nslab; bin->stats.nmalloc += filled; bin->stats.nrequests += filled; bin->stats.curregs += filled; } malloc_mutex_unlock(tsdn, &bin->lock); arena_decay_tick(tsdn, arena); return filled; } /* * Without allocating a new slab, try arena_slab_reg_alloc() and re-fill * bin->slabcur if necessary. */ static void * arena_bin_malloc_no_fresh_slab(tsdn_t *tsdn, arena_t *arena, bin_t *bin, szind_t binind) { malloc_mutex_assert_owner(tsdn, &bin->lock); if (bin->slabcur == NULL || edata_nfree_get(bin->slabcur) == 0) { if (arena_bin_refill_slabcur_no_fresh_slab(tsdn, arena, bin)) { return NULL; } } assert(bin->slabcur != NULL && edata_nfree_get(bin->slabcur) > 0); return arena_slab_reg_alloc(bin->slabcur, &bin_infos[binind]); } static void * arena_malloc_small(tsdn_t *tsdn, arena_t *arena, szind_t binind, bool zero) { assert(binind < SC_NBINS); const bin_info_t *bin_info = &bin_infos[binind]; size_t usize = sz_index2size(binind); unsigned binshard; bin_t *bin = arena_bin_choose(tsdn, arena, binind, &binshard); malloc_mutex_lock(tsdn, &bin->lock); edata_t *fresh_slab = NULL; void *ret = arena_bin_malloc_no_fresh_slab(tsdn, arena, bin, binind); if (ret == NULL) { malloc_mutex_unlock(tsdn, &bin->lock); /******************************/ fresh_slab = arena_slab_alloc(tsdn, arena, binind, binshard, bin_info); /********************************/ malloc_mutex_lock(tsdn, &bin->lock); /* Retry since the lock was dropped. */ ret = arena_bin_malloc_no_fresh_slab(tsdn, arena, bin, binind); if (ret == NULL) { if (fresh_slab == NULL) { /* OOM */ malloc_mutex_unlock(tsdn, &bin->lock); return NULL; } ret = arena_bin_malloc_with_fresh_slab(tsdn, arena, bin, binind, fresh_slab); fresh_slab = NULL; } } if (config_stats) { bin->stats.nmalloc++; bin->stats.nrequests++; bin->stats.curregs++; } malloc_mutex_unlock(tsdn, &bin->lock); if (fresh_slab != NULL) { arena_slab_dalloc(tsdn, arena, fresh_slab); } if (zero) { memset(ret, 0, usize); } arena_decay_tick(tsdn, arena); return ret; } void * arena_malloc_hard(tsdn_t *tsdn, arena_t *arena, size_t size, szind_t ind, bool zero) { assert(!tsdn_null(tsdn) || arena != NULL); if (likely(!tsdn_null(tsdn))) { arena = arena_choose_maybe_huge(tsdn_tsd(tsdn), arena, size); } if (unlikely(arena == NULL)) { return NULL; } if (likely(size <= SC_SMALL_MAXCLASS)) { return arena_malloc_small(tsdn, arena, ind, zero); } return large_malloc(tsdn, arena, sz_index2size(ind), zero); } void * arena_palloc(tsdn_t *tsdn, arena_t *arena, size_t usize, size_t alignment, bool zero, tcache_t *tcache) { void *ret; if (usize <= SC_SMALL_MAXCLASS && (alignment < PAGE || (alignment == PAGE && (usize & PAGE_MASK) == 0))) { /* Small; alignment doesn't require special slab placement. */ ret = arena_malloc(tsdn, arena, usize, sz_size2index(usize), zero, tcache, true); } else { if (likely(alignment <= CACHELINE)) { ret = large_malloc(tsdn, arena, usize, zero); } else { ret = large_palloc(tsdn, arena, usize, alignment, zero); } } return ret; } void arena_prof_promote(tsdn_t *tsdn, void *ptr, size_t usize) { cassert(config_prof); assert(ptr != NULL); assert(isalloc(tsdn, ptr) == SC_LARGE_MINCLASS); assert(usize <= SC_SMALL_MAXCLASS); if (config_opt_safety_checks) { safety_check_set_redzone(ptr, usize, SC_LARGE_MINCLASS); } edata_t *edata = emap_edata_lookup(tsdn, &arena_emap_global, ptr); szind_t szind = sz_size2index(usize); edata_szind_set(edata, szind); emap_remap(tsdn, &arena_emap_global, edata, szind, /* slab */ false); assert(isalloc(tsdn, ptr) == usize); } static size_t arena_prof_demote(tsdn_t *tsdn, edata_t *edata, const void *ptr) { cassert(config_prof); assert(ptr != NULL); edata_szind_set(edata, SC_NBINS); emap_remap(tsdn, &arena_emap_global, edata, SC_NBINS, /* slab */ false); assert(isalloc(tsdn, ptr) == SC_LARGE_MINCLASS); return SC_LARGE_MINCLASS; } void arena_dalloc_promoted(tsdn_t *tsdn, void *ptr, tcache_t *tcache, bool slow_path) { cassert(config_prof); assert(opt_prof); edata_t *edata = emap_edata_lookup(tsdn, &arena_emap_global, ptr); size_t usize = edata_usize_get(edata); size_t bumped_usize = arena_prof_demote(tsdn, edata, ptr); if (config_opt_safety_checks && usize < SC_LARGE_MINCLASS) { /* * Currently, we only do redzoning for small sampled * allocations. */ assert(bumped_usize == SC_LARGE_MINCLASS); safety_check_verify_redzone(ptr, usize, bumped_usize); } if (bumped_usize <= tcache_maxclass && tcache != NULL) { tcache_dalloc_large(tsdn_tsd(tsdn), tcache, ptr, sz_size2index(bumped_usize), slow_path); } else { large_dalloc(tsdn, edata); } } static void arena_dissociate_bin_slab(arena_t *arena, edata_t *slab, bin_t *bin) { /* Dissociate slab from bin. */ if (slab == bin->slabcur) { bin->slabcur = NULL; } else { szind_t binind = edata_szind_get(slab); const bin_info_t *bin_info = &bin_infos[binind]; /* * The following block's conditional is necessary because if the * slab only contains one region, then it never gets inserted * into the non-full slabs heap. */ if (bin_info->nregs == 1) { arena_bin_slabs_full_remove(arena, bin, slab); } else { arena_bin_slabs_nonfull_remove(bin, slab); } } } static void arena_bin_lower_slab(tsdn_t *tsdn, arena_t *arena, edata_t *slab, bin_t *bin) { assert(edata_nfree_get(slab) > 0); /* * Make sure that if bin->slabcur is non-NULL, it refers to the * oldest/lowest non-full slab. It is okay to NULL slabcur out rather * than proactively keeping it pointing at the oldest/lowest non-full * slab. */ if (bin->slabcur != NULL && edata_snad_comp(bin->slabcur, slab) > 0) { /* Switch slabcur. */ if (edata_nfree_get(bin->slabcur) > 0) { arena_bin_slabs_nonfull_insert(bin, bin->slabcur); } else { arena_bin_slabs_full_insert(arena, bin, bin->slabcur); } bin->slabcur = slab; if (config_stats) { bin->stats.reslabs++; } } else { arena_bin_slabs_nonfull_insert(bin, slab); } } static void arena_dalloc_bin_slab_prepare(tsdn_t *tsdn, edata_t *slab, bin_t *bin) { malloc_mutex_assert_owner(tsdn, &bin->lock); assert(slab != bin->slabcur); if (config_stats) { bin->stats.curslabs--; } } /* Returns true if arena_slab_dalloc must be called on slab */ static bool arena_dalloc_bin_locked_impl(tsdn_t *tsdn, arena_t *arena, bin_t *bin, szind_t binind, edata_t *slab, void *ptr) { const bin_info_t *bin_info = &bin_infos[binind]; arena_slab_reg_dalloc(slab, edata_slab_data_get(slab), ptr); bool ret = false; unsigned nfree = edata_nfree_get(slab); if (nfree == bin_info->nregs) { arena_dissociate_bin_slab(arena, slab, bin); arena_dalloc_bin_slab_prepare(tsdn, slab, bin); ret = true; } else if (nfree == 1 && slab != bin->slabcur) { arena_bin_slabs_full_remove(arena, bin, slab); arena_bin_lower_slab(tsdn, arena, slab, bin); } if (config_stats) { bin->stats.ndalloc++; bin->stats.curregs--; } return ret; } bool arena_dalloc_bin_locked(tsdn_t *tsdn, arena_t *arena, bin_t *bin, szind_t binind, edata_t *edata, void *ptr) { return arena_dalloc_bin_locked_impl(tsdn, arena, bin, binind, edata, ptr); } static void arena_dalloc_bin(tsdn_t *tsdn, arena_t *arena, edata_t *edata, void *ptr) { szind_t binind = edata_szind_get(edata); unsigned binshard = edata_binshard_get(edata); bin_t *bin = &arena->bins[binind].bin_shards[binshard]; malloc_mutex_lock(tsdn, &bin->lock); bool ret = arena_dalloc_bin_locked_impl(tsdn, arena, bin, binind, edata, ptr); malloc_mutex_unlock(tsdn, &bin->lock); if (ret) { arena_slab_dalloc(tsdn, arena, edata); } } void arena_dalloc_small(tsdn_t *tsdn, void *ptr) { edata_t *edata = emap_edata_lookup(tsdn, &arena_emap_global, ptr); arena_t *arena = arena_get_from_edata(edata); arena_dalloc_bin(tsdn, arena, edata, ptr); arena_decay_tick(tsdn, arena); } bool arena_ralloc_no_move(tsdn_t *tsdn, void *ptr, size_t oldsize, size_t size, size_t extra, bool zero, size_t *newsize) { bool ret; /* Calls with non-zero extra had to clamp extra. */ assert(extra == 0 || size + extra <= SC_LARGE_MAXCLASS); edata_t *edata = emap_edata_lookup(tsdn, &arena_emap_global, ptr); if (unlikely(size > SC_LARGE_MAXCLASS)) { ret = true; goto done; } size_t usize_min = sz_s2u(size); size_t usize_max = sz_s2u(size + extra); if (likely(oldsize <= SC_SMALL_MAXCLASS && usize_min <= SC_SMALL_MAXCLASS)) { /* * Avoid moving the allocation if the size class can be left the * same. */ assert(bin_infos[sz_size2index(oldsize)].reg_size == oldsize); if ((usize_max > SC_SMALL_MAXCLASS || sz_size2index(usize_max) != sz_size2index(oldsize)) && (size > oldsize || usize_max < oldsize)) { ret = true; goto done; } arena_t *arena = arena_get_from_edata(edata); arena_decay_tick(tsdn, arena); ret = false; } else if (oldsize >= SC_LARGE_MINCLASS && usize_max >= SC_LARGE_MINCLASS) { ret = large_ralloc_no_move(tsdn, edata, usize_min, usize_max, zero); } else { ret = true; } done: assert(edata == emap_edata_lookup(tsdn, &arena_emap_global, ptr)); *newsize = edata_usize_get(edata); return ret; } static void * arena_ralloc_move_helper(tsdn_t *tsdn, arena_t *arena, size_t usize, size_t alignment, bool zero, tcache_t *tcache) { if (alignment == 0) { return arena_malloc(tsdn, arena, usize, sz_size2index(usize), zero, tcache, true); } usize = sz_sa2u(usize, alignment); if (unlikely(usize == 0 || usize > SC_LARGE_MAXCLASS)) { return NULL; } return ipalloct(tsdn, usize, alignment, zero, tcache, arena); } void * arena_ralloc(tsdn_t *tsdn, arena_t *arena, void *ptr, size_t oldsize, size_t size, size_t alignment, bool zero, tcache_t *tcache, hook_ralloc_args_t *hook_args) { size_t usize = alignment == 0 ? sz_s2u(size) : sz_sa2u(size, alignment); if (unlikely(usize == 0 || size > SC_LARGE_MAXCLASS)) { return NULL; } if (likely(usize <= SC_SMALL_MAXCLASS)) { /* Try to avoid moving the allocation. */ UNUSED size_t newsize; if (!arena_ralloc_no_move(tsdn, ptr, oldsize, usize, 0, zero, &newsize)) { hook_invoke_expand(hook_args->is_realloc ? hook_expand_realloc : hook_expand_rallocx, ptr, oldsize, usize, (uintptr_t)ptr, hook_args->args); return ptr; } } if (oldsize >= SC_LARGE_MINCLASS && usize >= SC_LARGE_MINCLASS) { return large_ralloc(tsdn, arena, ptr, usize, alignment, zero, tcache, hook_args); } /* * size and oldsize are different enough that we need to move the * object. In that case, fall back to allocating new space and copying. */ void *ret = arena_ralloc_move_helper(tsdn, arena, usize, alignment, zero, tcache); if (ret == NULL) { return NULL; } hook_invoke_alloc(hook_args->is_realloc ? hook_alloc_realloc : hook_alloc_rallocx, ret, (uintptr_t)ret, hook_args->args); hook_invoke_dalloc(hook_args->is_realloc ? hook_dalloc_realloc : hook_dalloc_rallocx, ptr, hook_args->args); /* * Junk/zero-filling were already done by * ipalloc()/arena_malloc(). */ size_t copysize = (usize < oldsize) ? usize : oldsize; memcpy(ret, ptr, copysize); isdalloct(tsdn, ptr, oldsize, tcache, NULL, true); return ret; } ehooks_t * arena_get_ehooks(arena_t *arena) { return base_ehooks_get(arena->base); } extent_hooks_t * arena_set_extent_hooks(tsd_t *tsd, arena_t *arena, extent_hooks_t *extent_hooks) { background_thread_info_t *info; if (have_background_thread) { info = arena_background_thread_info_get(arena); malloc_mutex_lock(tsd_tsdn(tsd), &info->mtx); } extent_hooks_t *ret = base_extent_hooks_set(arena->base, extent_hooks); if (have_background_thread) { malloc_mutex_unlock(tsd_tsdn(tsd), &info->mtx); } return ret; } dss_prec_t arena_dss_prec_get(arena_t *arena) { return (dss_prec_t)atomic_load_u(&arena->dss_prec, ATOMIC_ACQUIRE); } bool arena_dss_prec_set(arena_t *arena, dss_prec_t dss_prec) { if (!have_dss) { return (dss_prec != dss_prec_disabled); } atomic_store_u(&arena->dss_prec, (unsigned)dss_prec, ATOMIC_RELEASE); return false; } ssize_t arena_dirty_decay_ms_default_get(void) { return atomic_load_zd(&dirty_decay_ms_default, ATOMIC_RELAXED); } bool arena_dirty_decay_ms_default_set(ssize_t decay_ms) { if (!decay_ms_valid(decay_ms)) { return true; } atomic_store_zd(&dirty_decay_ms_default, decay_ms, ATOMIC_RELAXED); return false; } ssize_t arena_muzzy_decay_ms_default_get(void) { return atomic_load_zd(&muzzy_decay_ms_default, ATOMIC_RELAXED); } bool arena_muzzy_decay_ms_default_set(ssize_t decay_ms) { if (!decay_ms_valid(decay_ms)) { return true; } atomic_store_zd(&muzzy_decay_ms_default, decay_ms, ATOMIC_RELAXED); return false; } bool arena_retain_grow_limit_get_set(tsd_t *tsd, arena_t *arena, size_t *old_limit, size_t *new_limit) { assert(opt_retain); return pac_retain_grow_limit_get_set(tsd_tsdn(tsd), &arena->pa_shard.pac, old_limit, new_limit); } unsigned arena_nthreads_get(arena_t *arena, bool internal) { return atomic_load_u(&arena->nthreads[internal], ATOMIC_RELAXED); } void arena_nthreads_inc(arena_t *arena, bool internal) { atomic_fetch_add_u(&arena->nthreads[internal], 1, ATOMIC_RELAXED); } void arena_nthreads_dec(arena_t *arena, bool internal) { atomic_fetch_sub_u(&arena->nthreads[internal], 1, ATOMIC_RELAXED); } arena_t * arena_new(tsdn_t *tsdn, unsigned ind, extent_hooks_t *extent_hooks) { arena_t *arena; base_t *base; unsigned i; if (ind == 0) { base = b0get(); } else { base = base_new(tsdn, ind, extent_hooks); if (base == NULL) { return NULL; } } unsigned nbins_total = 0; for (i = 0; i < SC_NBINS; i++) { nbins_total += bin_infos[i].n_shards; } size_t arena_size = sizeof(arena_t) + sizeof(bin_t) * nbins_total; arena = (arena_t *)base_alloc(tsdn, base, arena_size, CACHELINE); if (arena == NULL) { goto label_error; } atomic_store_u(&arena->nthreads[0], 0, ATOMIC_RELAXED); atomic_store_u(&arena->nthreads[1], 0, ATOMIC_RELAXED); arena->last_thd = NULL; if (config_stats) { if (arena_stats_init(tsdn, &arena->stats)) { goto label_error; } ql_new(&arena->tcache_ql); ql_new(&arena->cache_bin_array_descriptor_ql); if (malloc_mutex_init(&arena->tcache_ql_mtx, "tcache_ql", WITNESS_RANK_TCACHE_QL, malloc_mutex_rank_exclusive)) { goto label_error; } } atomic_store_u(&arena->dss_prec, (unsigned)extent_dss_prec_get(), ATOMIC_RELAXED); edata_list_active_init(&arena->large); if (malloc_mutex_init(&arena->large_mtx, "arena_large", WITNESS_RANK_ARENA_LARGE, malloc_mutex_rank_exclusive)) { goto label_error; } nstime_t cur_time; nstime_init_update(&cur_time); if (pa_shard_init(tsdn, &arena->pa_shard, &arena_emap_global, base, ind, &arena->stats.pa_shard_stats, LOCKEDINT_MTX(arena->stats.mtx), &cur_time, arena_dirty_decay_ms_default_get(), arena_muzzy_decay_ms_default_get())) { goto label_error; } /* Initialize bins. */ uintptr_t bin_addr = (uintptr_t)arena + sizeof(arena_t); atomic_store_u(&arena->binshard_next, 0, ATOMIC_RELEASE); for (i = 0; i < SC_NBINS; i++) { unsigned nshards = bin_infos[i].n_shards; arena->bins[i].bin_shards = (bin_t *)bin_addr; bin_addr += nshards * sizeof(bin_t); for (unsigned j = 0; j < nshards; j++) { bool err = bin_init(&arena->bins[i].bin_shards[j]); if (err) { goto label_error; } } } assert(bin_addr == (uintptr_t)arena + arena_size); arena->base = base; /* Set arena before creating background threads. */ arena_set(ind, arena); nstime_init_update(&arena->create_time); /* We don't support reentrancy for arena 0 bootstrapping. */ if (ind != 0) { /* * If we're here, then arena 0 already exists, so bootstrapping * is done enough that we should have tsd. */ assert(!tsdn_null(tsdn)); pre_reentrancy(tsdn_tsd(tsdn), arena); if (test_hooks_arena_new_hook) { test_hooks_arena_new_hook(); } post_reentrancy(tsdn_tsd(tsdn)); } return arena; label_error: if (ind != 0) { base_delete(tsdn, base); } return NULL; } arena_t * arena_choose_huge(tsd_t *tsd) { /* huge_arena_ind can be 0 during init (will use a0). */ if (huge_arena_ind == 0) { assert(!malloc_initialized()); } arena_t *huge_arena = arena_get(tsd_tsdn(tsd), huge_arena_ind, false); if (huge_arena == NULL) { /* Create the huge arena on demand. */ assert(huge_arena_ind != 0); huge_arena = arena_get(tsd_tsdn(tsd), huge_arena_ind, true); if (huge_arena == NULL) { return NULL; } /* * Purge eagerly for huge allocations, because: 1) number of * huge allocations is usually small, which means ticker based * decay is not reliable; and 2) less immediate reuse is * expected for huge allocations. */ if (arena_dirty_decay_ms_default_get() > 0) { arena_decay_ms_set(tsd_tsdn(tsd), huge_arena, extent_state_dirty, 0); } if (arena_muzzy_decay_ms_default_get() > 0) { arena_decay_ms_set(tsd_tsdn(tsd), huge_arena, extent_state_muzzy, 0); } } return huge_arena; } bool arena_init_huge(void) { bool huge_enabled; /* The threshold should be large size class. */ if (opt_oversize_threshold > SC_LARGE_MAXCLASS || opt_oversize_threshold < SC_LARGE_MINCLASS) { opt_oversize_threshold = 0; oversize_threshold = SC_LARGE_MAXCLASS + PAGE; huge_enabled = false; } else { /* Reserve the index for the huge arena. */ huge_arena_ind = narenas_total_get(); oversize_threshold = opt_oversize_threshold; huge_enabled = true; } return huge_enabled; } bool arena_is_huge(unsigned arena_ind) { if (huge_arena_ind == 0) { return false; } return (arena_ind == huge_arena_ind); } void arena_boot(sc_data_t *sc_data) { arena_dirty_decay_ms_default_set(opt_dirty_decay_ms); arena_muzzy_decay_ms_default_set(opt_muzzy_decay_ms); for (unsigned i = 0; i < SC_NBINS; i++) { sc_t *sc = &sc_data->sc[i]; div_init(&arena_binind_div_info[i], (1U << sc->lg_base) + (sc->ndelta << sc->lg_delta)); } } void arena_prefork0(tsdn_t *tsdn, arena_t *arena) { pa_shard_prefork0(tsdn, &arena->pa_shard); } void arena_prefork1(tsdn_t *tsdn, arena_t *arena) { if (config_stats) { malloc_mutex_prefork(tsdn, &arena->tcache_ql_mtx); } } void arena_prefork2(tsdn_t *tsdn, arena_t *arena) { pa_shard_prefork2(tsdn, &arena->pa_shard); } void arena_prefork3(tsdn_t *tsdn, arena_t *arena) { pa_shard_prefork3(tsdn, &arena->pa_shard); } void arena_prefork4(tsdn_t *tsdn, arena_t *arena) { pa_shard_prefork4(tsdn, &arena->pa_shard); } void arena_prefork5(tsdn_t *tsdn, arena_t *arena) { base_prefork(tsdn, arena->base); } void arena_prefork6(tsdn_t *tsdn, arena_t *arena) { malloc_mutex_prefork(tsdn, &arena->large_mtx); } void arena_prefork7(tsdn_t *tsdn, arena_t *arena) { for (unsigned i = 0; i < SC_NBINS; i++) { for (unsigned j = 0; j < bin_infos[i].n_shards; j++) { bin_prefork(tsdn, &arena->bins[i].bin_shards[j]); } } } void arena_postfork_parent(tsdn_t *tsdn, arena_t *arena) { unsigned i; for (i = 0; i < SC_NBINS; i++) { for (unsigned j = 0; j < bin_infos[i].n_shards; j++) { bin_postfork_parent(tsdn, &arena->bins[i].bin_shards[j]); } } malloc_mutex_postfork_parent(tsdn, &arena->large_mtx); base_postfork_parent(tsdn, arena->base); pa_shard_postfork_parent(tsdn, &arena->pa_shard); if (config_stats) { malloc_mutex_postfork_parent(tsdn, &arena->tcache_ql_mtx); } } void arena_postfork_child(tsdn_t *tsdn, arena_t *arena) { unsigned i; atomic_store_u(&arena->nthreads[0], 0, ATOMIC_RELAXED); atomic_store_u(&arena->nthreads[1], 0, ATOMIC_RELAXED); if (tsd_arena_get(tsdn_tsd(tsdn)) == arena) { arena_nthreads_inc(arena, false); } if (tsd_iarena_get(tsdn_tsd(tsdn)) == arena) { arena_nthreads_inc(arena, true); } if (config_stats) { ql_new(&arena->tcache_ql); ql_new(&arena->cache_bin_array_descriptor_ql); tcache_slow_t *tcache_slow = tcache_slow_get(tsdn_tsd(tsdn)); if (tcache_slow != NULL && tcache_slow->arena == arena) { tcache_t *tcache = tcache_slow->tcache; ql_elm_new(tcache_slow, link); ql_tail_insert(&arena->tcache_ql, tcache_slow, link); cache_bin_array_descriptor_init( &tcache_slow->cache_bin_array_descriptor, tcache->bins); ql_tail_insert(&arena->cache_bin_array_descriptor_ql, &tcache_slow->cache_bin_array_descriptor, link); } } for (i = 0; i < SC_NBINS; i++) { for (unsigned j = 0; j < bin_infos[i].n_shards; j++) { bin_postfork_child(tsdn, &arena->bins[i].bin_shards[j]); } } malloc_mutex_postfork_child(tsdn, &arena->large_mtx); base_postfork_child(tsdn, arena->base); pa_shard_postfork_child(tsdn, &arena->pa_shard); if (config_stats) { malloc_mutex_postfork_child(tsdn, &arena->tcache_ql_mtx); } }