#ifndef JEMALLOC_INTERNAL_EDATA_H #define JEMALLOC_INTERNAL_EDATA_H #include "jemalloc/internal/atomic.h" #include "jemalloc/internal/bin_info.h" #include "jemalloc/internal/bit_util.h" #include "jemalloc/internal/nstime.h" #include "jemalloc/internal/ph.h" #include "jemalloc/internal/ql.h" #include "jemalloc/internal/sc.h" #include "jemalloc/internal/slab_data.h" #include "jemalloc/internal/sz.h" enum extent_state_e { extent_state_active = 0, extent_state_dirty = 1, extent_state_muzzy = 2, extent_state_retained = 3 }; typedef enum extent_state_e extent_state_t; enum extent_head_state_e { EXTENT_NOT_HEAD, EXTENT_IS_HEAD /* Only relevant for Windows && opt.retain. */ }; typedef enum extent_head_state_e extent_head_state_t; /* Extent (span of pages). Use accessor functions for e_* fields. */ typedef struct edata_s edata_t; typedef ql_head(edata_t) edata_list_t; typedef ph(edata_t) edata_tree_t; typedef ph(edata_t) edata_heap_t; struct edata_s { /* * Bitfield containing several fields: * * a: arena_ind * b: slab * c: committed * d: dumpable * z: zeroed * t: state * i: szind * f: nfree * s: bin_shard * n: sn * * nnnnnnnn ... nnnnnnss ssssffff ffffffii iiiiiitt zdcbaaaa aaaaaaaa * * arena_ind: Arena from which this extent came, or all 1 bits if * unassociated. * * slab: The slab flag indicates whether the extent is used for a slab * of small regions. This helps differentiate small size classes, * and it indicates whether interior pointers can be looked up via * iealloc(). * * committed: The committed flag indicates whether physical memory is * committed to the extent, whether explicitly or implicitly * as on a system that overcommits and satisfies physical * memory needs on demand via soft page faults. * * dumpable: The dumpable flag indicates whether or not we've set the * memory in question to be dumpable. Note that this * interacts somewhat subtly with user-specified extent hooks, * since we don't know if *they* are fiddling with * dumpability (in which case, we don't want to undo whatever * they're doing). To deal with this scenario, we: * - Make dumpable false only for memory allocated with the * default hooks. * - Only allow memory to go from non-dumpable to dumpable, * and only once. * - Never make the OS call to allow dumping when the * dumpable bit is already set. * These three constraints mean that we will never * accidentally dump user memory that the user meant to set * nondumpable with their extent hooks. * * * zeroed: The zeroed flag is used by extent recycling code to track * whether memory is zero-filled. * * state: The state flag is an extent_state_t. * * szind: The szind flag indicates usable size class index for * allocations residing in this extent, regardless of whether the * extent is a slab. Extent size and usable size often differ * even for non-slabs, either due to sz_large_pad or promotion of * sampled small regions. * * nfree: Number of free regions in slab. * * bin_shard: the shard of the bin from which this extent came. * * sn: Serial number (potentially non-unique). * * Serial numbers may wrap around if !opt_retain, but as long as * comparison functions fall back on address comparison for equal * serial numbers, stable (if imperfect) ordering is maintained. * * Serial numbers may not be unique even in the absence of * wrap-around, e.g. when splitting an extent and assigning the same * serial number to both resulting adjacent extents. */ uint64_t e_bits; #define MASK(CURRENT_FIELD_WIDTH, CURRENT_FIELD_SHIFT) ((((((uint64_t)0x1U) << (CURRENT_FIELD_WIDTH)) - 1)) << (CURRENT_FIELD_SHIFT)) #define EDATA_BITS_ARENA_WIDTH MALLOCX_ARENA_BITS #define EDATA_BITS_ARENA_SHIFT 0 #define EDATA_BITS_ARENA_MASK MASK(EDATA_BITS_ARENA_WIDTH, EDATA_BITS_ARENA_SHIFT) #define EDATA_BITS_SLAB_WIDTH 1 #define EDATA_BITS_SLAB_SHIFT (EDATA_BITS_ARENA_WIDTH + EDATA_BITS_ARENA_SHIFT) #define EDATA_BITS_SLAB_MASK MASK(EDATA_BITS_SLAB_WIDTH, EDATA_BITS_SLAB_SHIFT) #define EDATA_BITS_COMMITTED_WIDTH 1 #define EDATA_BITS_COMMITTED_SHIFT (EDATA_BITS_SLAB_WIDTH + EDATA_BITS_SLAB_SHIFT) #define EDATA_BITS_COMMITTED_MASK MASK(EDATA_BITS_COMMITTED_WIDTH, EDATA_BITS_COMMITTED_SHIFT) #define EDATA_BITS_DUMPABLE_WIDTH 1 #define EDATA_BITS_DUMPABLE_SHIFT (EDATA_BITS_COMMITTED_WIDTH + EDATA_BITS_COMMITTED_SHIFT) #define EDATA_BITS_DUMPABLE_MASK MASK(EDATA_BITS_DUMPABLE_WIDTH, EDATA_BITS_DUMPABLE_SHIFT) #define EDATA_BITS_ZEROED_WIDTH 1 #define EDATA_BITS_ZEROED_SHIFT (EDATA_BITS_DUMPABLE_WIDTH + EDATA_BITS_DUMPABLE_SHIFT) #define EDATA_BITS_ZEROED_MASK MASK(EDATA_BITS_ZEROED_WIDTH, EDATA_BITS_ZEROED_SHIFT) #define EDATA_BITS_STATE_WIDTH 2 #define EDATA_BITS_STATE_SHIFT (EDATA_BITS_ZEROED_WIDTH + EDATA_BITS_ZEROED_SHIFT) #define EDATA_BITS_STATE_MASK MASK(EDATA_BITS_STATE_WIDTH, EDATA_BITS_STATE_SHIFT) #define EDATA_BITS_SZIND_WIDTH LG_CEIL(SC_NSIZES) #define EDATA_BITS_SZIND_SHIFT (EDATA_BITS_STATE_WIDTH + EDATA_BITS_STATE_SHIFT) #define EDATA_BITS_SZIND_MASK MASK(EDATA_BITS_SZIND_WIDTH, EDATA_BITS_SZIND_SHIFT) #define EDATA_BITS_NFREE_WIDTH (SC_LG_SLAB_MAXREGS + 1) #define EDATA_BITS_NFREE_SHIFT (EDATA_BITS_SZIND_WIDTH + EDATA_BITS_SZIND_SHIFT) #define EDATA_BITS_NFREE_MASK MASK(EDATA_BITS_NFREE_WIDTH, EDATA_BITS_NFREE_SHIFT) #define EDATA_BITS_BINSHARD_WIDTH 6 #define EDATA_BITS_BINSHARD_SHIFT (EDATA_BITS_NFREE_WIDTH + EDATA_BITS_NFREE_SHIFT) #define EDATA_BITS_BINSHARD_MASK MASK(EDATA_BITS_BINSHARD_WIDTH, EDATA_BITS_BINSHARD_SHIFT) #define EDATA_BITS_IS_HEAD_WIDTH 1 #define EDATA_BITS_IS_HEAD_SHIFT (EDATA_BITS_BINSHARD_WIDTH + EDATA_BITS_BINSHARD_SHIFT) #define EDATA_BITS_IS_HEAD_MASK MASK(EDATA_BITS_IS_HEAD_WIDTH, EDATA_BITS_IS_HEAD_SHIFT) #define EDATA_BITS_SN_SHIFT (EDATA_BITS_IS_HEAD_WIDTH + EDATA_BITS_IS_HEAD_SHIFT) #define EDATA_BITS_SN_MASK (UINT64_MAX << EDATA_BITS_SN_SHIFT) /* Pointer to the extent that this structure is responsible for. */ void *e_addr; union { /* * Extent size and serial number associated with the extent * structure (different than the serial number for the extent at * e_addr). * * ssssssss [...] ssssssss ssssnnnn nnnnnnnn */ size_t e_size_esn; #define EDATA_SIZE_MASK ((size_t)~(PAGE-1)) #define EDATA_ESN_MASK ((size_t)PAGE-1) /* Base extent size, which may not be a multiple of PAGE. */ size_t e_bsize; }; /* * List linkage, used by a variety of lists: * - bin_t's slabs_full * - extents_t's LRU * - stashed dirty extents * - arena's large allocations */ ql_elm(edata_t) ql_link; /* * Linkage for per size class sn/address-ordered heaps, and * for extent_avail */ phn(edata_t) ph_link; union { /* Small region slab metadata. */ slab_data_t e_slab_data; /* Profiling data, used for large objects. */ struct { /* Time when this was allocated. */ nstime_t e_alloc_time; /* Points to a prof_tctx_t. */ atomic_p_t e_prof_tctx; }; }; }; static inline unsigned edata_arena_ind_get(const edata_t *edata) { unsigned arena_ind = (unsigned)((edata->e_bits & EDATA_BITS_ARENA_MASK) >> EDATA_BITS_ARENA_SHIFT); assert(arena_ind < MALLOCX_ARENA_LIMIT); return arena_ind; } static inline szind_t edata_szind_get_maybe_invalid(const edata_t *edata) { szind_t szind = (szind_t)((edata->e_bits & EDATA_BITS_SZIND_MASK) >> EDATA_BITS_SZIND_SHIFT); assert(szind <= SC_NSIZES); return szind; } static inline szind_t edata_szind_get(const edata_t *edata) { szind_t szind = edata_szind_get_maybe_invalid(edata); assert(szind < SC_NSIZES); /* Never call when "invalid". */ return szind; } static inline size_t edata_usize_get(const edata_t *edata) { return sz_index2size(edata_szind_get(edata)); } static inline unsigned edata_binshard_get(const edata_t *edata) { unsigned binshard = (unsigned)((edata->e_bits & EDATA_BITS_BINSHARD_MASK) >> EDATA_BITS_BINSHARD_SHIFT); assert(binshard < bin_infos[edata_szind_get(edata)].n_shards); return binshard; } static inline size_t edata_sn_get(const edata_t *edata) { return (size_t)((edata->e_bits & EDATA_BITS_SN_MASK) >> EDATA_BITS_SN_SHIFT); } static inline extent_state_t edata_state_get(const edata_t *edata) { return (extent_state_t)((edata->e_bits & EDATA_BITS_STATE_MASK) >> EDATA_BITS_STATE_SHIFT); } static inline bool edata_zeroed_get(const edata_t *edata) { return (bool)((edata->e_bits & EDATA_BITS_ZEROED_MASK) >> EDATA_BITS_ZEROED_SHIFT); } static inline bool edata_committed_get(const edata_t *edata) { return (bool)((edata->e_bits & EDATA_BITS_COMMITTED_MASK) >> EDATA_BITS_COMMITTED_SHIFT); } static inline bool edata_dumpable_get(const edata_t *edata) { return (bool)((edata->e_bits & EDATA_BITS_DUMPABLE_MASK) >> EDATA_BITS_DUMPABLE_SHIFT); } static inline bool edata_slab_get(const edata_t *edata) { return (bool)((edata->e_bits & EDATA_BITS_SLAB_MASK) >> EDATA_BITS_SLAB_SHIFT); } static inline unsigned edata_nfree_get(const edata_t *edata) { assert(edata_slab_get(edata)); return (unsigned)((edata->e_bits & EDATA_BITS_NFREE_MASK) >> EDATA_BITS_NFREE_SHIFT); } static inline void * edata_base_get(const edata_t *edata) { assert(edata->e_addr == PAGE_ADDR2BASE(edata->e_addr) || !edata_slab_get(edata)); return PAGE_ADDR2BASE(edata->e_addr); } static inline void * edata_addr_get(const edata_t *edata) { assert(edata->e_addr == PAGE_ADDR2BASE(edata->e_addr) || !edata_slab_get(edata)); return edata->e_addr; } static inline size_t edata_size_get(const edata_t *edata) { return (edata->e_size_esn & EDATA_SIZE_MASK); } static inline size_t edata_esn_get(const edata_t *edata) { return (edata->e_size_esn & EDATA_ESN_MASK); } static inline size_t edata_bsize_get(const edata_t *edata) { return edata->e_bsize; } static inline void * edata_before_get(const edata_t *edata) { return (void *)((uintptr_t)edata_base_get(edata) - PAGE); } static inline void * edata_last_get(const edata_t *edata) { return (void *)((uintptr_t)edata_base_get(edata) + edata_size_get(edata) - PAGE); } static inline void * edata_past_get(const edata_t *edata) { return (void *)((uintptr_t)edata_base_get(edata) + edata_size_get(edata)); } static inline slab_data_t * edata_slab_data_get(edata_t *edata) { assert(edata_slab_get(edata)); return &edata->e_slab_data; } static inline const slab_data_t * edata_slab_data_get_const(const edata_t *edata) { assert(edata_slab_get(edata)); return &edata->e_slab_data; } static inline void edata_prof_info_get(const edata_t *edata, prof_info_t *prof_info) { assert(prof_info != NULL); prof_info->alloc_tctx = (prof_tctx_t *)atomic_load_p( &edata->e_prof_tctx, ATOMIC_ACQUIRE); prof_info->alloc_time = edata->e_alloc_time; } static inline void edata_arena_ind_set(edata_t *edata, unsigned arena_ind) { edata->e_bits = (edata->e_bits & ~EDATA_BITS_ARENA_MASK) | ((uint64_t)arena_ind << EDATA_BITS_ARENA_SHIFT); } static inline void edata_binshard_set(edata_t *edata, unsigned binshard) { /* The assertion assumes szind is set already. */ assert(binshard < bin_infos[edata_szind_get(edata)].n_shards); edata->e_bits = (edata->e_bits & ~EDATA_BITS_BINSHARD_MASK) | ((uint64_t)binshard << EDATA_BITS_BINSHARD_SHIFT); } static inline void edata_addr_set(edata_t *edata, void *addr) { edata->e_addr = addr; } static inline void edata_size_set(edata_t *edata, size_t size) { assert((size & ~EDATA_SIZE_MASK) == 0); edata->e_size_esn = size | (edata->e_size_esn & ~EDATA_SIZE_MASK); } static inline void edata_esn_set(edata_t *edata, size_t esn) { edata->e_size_esn = (edata->e_size_esn & ~EDATA_ESN_MASK) | (esn & EDATA_ESN_MASK); } static inline void edata_bsize_set(edata_t *edata, size_t bsize) { edata->e_bsize = bsize; } static inline void edata_szind_set(edata_t *edata, szind_t szind) { assert(szind <= SC_NSIZES); /* SC_NSIZES means "invalid". */ edata->e_bits = (edata->e_bits & ~EDATA_BITS_SZIND_MASK) | ((uint64_t)szind << EDATA_BITS_SZIND_SHIFT); } static inline void edata_nfree_set(edata_t *edata, unsigned nfree) { assert(edata_slab_get(edata)); edata->e_bits = (edata->e_bits & ~EDATA_BITS_NFREE_MASK) | ((uint64_t)nfree << EDATA_BITS_NFREE_SHIFT); } static inline void edata_nfree_binshard_set(edata_t *edata, unsigned nfree, unsigned binshard) { /* The assertion assumes szind is set already. */ assert(binshard < bin_infos[edata_szind_get(edata)].n_shards); edata->e_bits = (edata->e_bits & (~EDATA_BITS_NFREE_MASK & ~EDATA_BITS_BINSHARD_MASK)) | ((uint64_t)binshard << EDATA_BITS_BINSHARD_SHIFT) | ((uint64_t)nfree << EDATA_BITS_NFREE_SHIFT); } static inline void edata_nfree_inc(edata_t *edata) { assert(edata_slab_get(edata)); edata->e_bits += ((uint64_t)1U << EDATA_BITS_NFREE_SHIFT); } static inline void edata_nfree_dec(edata_t *edata) { assert(edata_slab_get(edata)); edata->e_bits -= ((uint64_t)1U << EDATA_BITS_NFREE_SHIFT); } static inline void edata_nfree_sub(edata_t *edata, uint64_t n) { assert(edata_slab_get(edata)); edata->e_bits -= (n << EDATA_BITS_NFREE_SHIFT); } static inline void edata_sn_set(edata_t *edata, size_t sn) { edata->e_bits = (edata->e_bits & ~EDATA_BITS_SN_MASK) | ((uint64_t)sn << EDATA_BITS_SN_SHIFT); } static inline void edata_state_set(edata_t *edata, extent_state_t state) { edata->e_bits = (edata->e_bits & ~EDATA_BITS_STATE_MASK) | ((uint64_t)state << EDATA_BITS_STATE_SHIFT); } static inline void edata_zeroed_set(edata_t *edata, bool zeroed) { edata->e_bits = (edata->e_bits & ~EDATA_BITS_ZEROED_MASK) | ((uint64_t)zeroed << EDATA_BITS_ZEROED_SHIFT); } static inline void edata_committed_set(edata_t *edata, bool committed) { edata->e_bits = (edata->e_bits & ~EDATA_BITS_COMMITTED_MASK) | ((uint64_t)committed << EDATA_BITS_COMMITTED_SHIFT); } static inline void edata_dumpable_set(edata_t *edata, bool dumpable) { edata->e_bits = (edata->e_bits & ~EDATA_BITS_DUMPABLE_MASK) | ((uint64_t)dumpable << EDATA_BITS_DUMPABLE_SHIFT); } static inline void edata_slab_set(edata_t *edata, bool slab) { edata->e_bits = (edata->e_bits & ~EDATA_BITS_SLAB_MASK) | ((uint64_t)slab << EDATA_BITS_SLAB_SHIFT); } static inline void edata_prof_tctx_set(edata_t *edata, prof_tctx_t *tctx) { atomic_store_p(&edata->e_prof_tctx, tctx, ATOMIC_RELEASE); } static inline void edata_prof_alloc_time_set(edata_t *edata, nstime_t *t) { nstime_copy(&edata->e_alloc_time, t); } static inline bool edata_is_head_get(edata_t *edata) { if (maps_coalesce) { not_reached(); } return (bool)((edata->e_bits & EDATA_BITS_IS_HEAD_MASK) >> EDATA_BITS_IS_HEAD_SHIFT); } static inline void edata_is_head_set(edata_t *edata, bool is_head) { if (maps_coalesce) { not_reached(); } edata->e_bits = (edata->e_bits & ~EDATA_BITS_IS_HEAD_MASK) | ((uint64_t)is_head << EDATA_BITS_IS_HEAD_SHIFT); } static inline void edata_init(edata_t *edata, unsigned arena_ind, void *addr, size_t size, bool slab, szind_t szind, size_t sn, extent_state_t state, bool zeroed, bool committed, bool dumpable, extent_head_state_t is_head) { assert(addr == PAGE_ADDR2BASE(addr) || !slab); edata_arena_ind_set(edata, arena_ind); edata_addr_set(edata, addr); edata_size_set(edata, size); edata_slab_set(edata, slab); edata_szind_set(edata, szind); edata_sn_set(edata, sn); edata_state_set(edata, state); edata_zeroed_set(edata, zeroed); edata_committed_set(edata, committed); edata_dumpable_set(edata, dumpable); ql_elm_new(edata, ql_link); if (!maps_coalesce) { edata_is_head_set(edata, is_head == EXTENT_IS_HEAD); } if (config_prof) { edata_prof_tctx_set(edata, NULL); } } static inline void edata_binit(edata_t *edata, void *addr, size_t bsize, size_t sn) { edata_arena_ind_set(edata, (1U << MALLOCX_ARENA_BITS) - 1); edata_addr_set(edata, addr); edata_bsize_set(edata, bsize); edata_slab_set(edata, false); edata_szind_set(edata, SC_NSIZES); edata_sn_set(edata, sn); edata_state_set(edata, extent_state_active); edata_zeroed_set(edata, true); edata_committed_set(edata, true); edata_dumpable_set(edata, true); } static inline void edata_list_init(edata_list_t *list) { ql_new(list); } static inline edata_t * edata_list_first(const edata_list_t *list) { return ql_first(list); } static inline edata_t * edata_list_last(const edata_list_t *list) { return ql_last(list, ql_link); } static inline void edata_list_append(edata_list_t *list, edata_t *edata) { ql_tail_insert(list, edata, ql_link); } static inline void edata_list_prepend(edata_list_t *list, edata_t *edata) { ql_head_insert(list, edata, ql_link); } static inline void edata_list_replace(edata_list_t *list, edata_t *to_remove, edata_t *to_insert) { ql_after_insert(to_remove, to_insert, ql_link); ql_remove(list, to_remove, ql_link); } static inline void edata_list_remove(edata_list_t *list, edata_t *edata) { ql_remove(list, edata, ql_link); } static inline int edata_sn_comp(const edata_t *a, const edata_t *b) { size_t a_sn = edata_sn_get(a); size_t b_sn = edata_sn_get(b); return (a_sn > b_sn) - (a_sn < b_sn); } static inline int edata_esn_comp(const edata_t *a, const edata_t *b) { size_t a_esn = edata_esn_get(a); size_t b_esn = edata_esn_get(b); return (a_esn > b_esn) - (a_esn < b_esn); } static inline int edata_ad_comp(const edata_t *a, const edata_t *b) { uintptr_t a_addr = (uintptr_t)edata_addr_get(a); uintptr_t b_addr = (uintptr_t)edata_addr_get(b); return (a_addr > b_addr) - (a_addr < b_addr); } static inline int edata_ead_comp(const edata_t *a, const edata_t *b) { uintptr_t a_eaddr = (uintptr_t)a; uintptr_t b_eaddr = (uintptr_t)b; return (a_eaddr > b_eaddr) - (a_eaddr < b_eaddr); } static inline int edata_snad_comp(const edata_t *a, const edata_t *b) { int ret; ret = edata_sn_comp(a, b); if (ret != 0) { return ret; } ret = edata_ad_comp(a, b); return ret; } static inline int edata_esnead_comp(const edata_t *a, const edata_t *b) { int ret; ret = edata_esn_comp(a, b); if (ret != 0) { return ret; } ret = edata_ead_comp(a, b); return ret; } ph_proto(, edata_avail_, edata_tree_t, edata_t) ph_proto(, edata_heap_, edata_heap_t, edata_t) #endif /* JEMALLOC_INTERNAL_EDATA_H */