#define JEMALLOC_PROF_C_ #include "jemalloc/internal/jemalloc_preamble.h" #include "jemalloc/internal/jemalloc_internal_includes.h" #include "jemalloc/internal/assert.h" #include "jemalloc/internal/ckh.h" #include "jemalloc/internal/hash.h" #include "jemalloc/internal/malloc_io.h" #include "jemalloc/internal/mutex.h" #include "jemalloc/internal/emitter.h" /******************************************************************************/ #ifdef JEMALLOC_PROF_LIBUNWIND #define UNW_LOCAL_ONLY #include #endif #ifdef JEMALLOC_PROF_LIBGCC /* * We have a circular dependency -- jemalloc_internal.h tells us if we should * use libgcc's unwinding functionality, but after we've included that, we've * already hooked _Unwind_Backtrace. We'll temporarily disable hooking. */ #undef _Unwind_Backtrace #include #define _Unwind_Backtrace JEMALLOC_HOOK(_Unwind_Backtrace, test_hooks_libc_hook) #endif /******************************************************************************/ /* Data. */ bool opt_prof = false; bool opt_prof_active = true; bool opt_prof_thread_active_init = true; size_t opt_lg_prof_sample = LG_PROF_SAMPLE_DEFAULT; ssize_t opt_lg_prof_interval = LG_PROF_INTERVAL_DEFAULT; bool opt_prof_gdump = false; bool opt_prof_final = false; bool opt_prof_leak = false; bool opt_prof_accum = false; bool opt_prof_log = false; char opt_prof_prefix[ /* Minimize memory bloat for non-prof builds. */ #ifdef JEMALLOC_PROF PATH_MAX + #endif 1]; /* * Initialized as opt_prof_active, and accessed via * prof_active_[gs]et{_unlocked,}(). */ bool prof_active; static malloc_mutex_t prof_active_mtx; /* * Initialized as opt_prof_thread_active_init, and accessed via * prof_thread_active_init_[gs]et(). */ static bool prof_thread_active_init; static malloc_mutex_t prof_thread_active_init_mtx; /* * Initialized as opt_prof_gdump, and accessed via * prof_gdump_[gs]et{_unlocked,}(). */ bool prof_gdump_val; static malloc_mutex_t prof_gdump_mtx; uint64_t prof_interval = 0; size_t lg_prof_sample; typedef enum prof_logging_state_e prof_logging_state_t; enum prof_logging_state_e { prof_logging_state_stopped, prof_logging_state_started, prof_logging_state_dumping }; /* * - stopped: log_start never called, or previous log_stop has completed. * - started: log_start called, log_stop not called yet. Allocations are logged. * - dumping: log_stop called but not finished; samples are not logged anymore. */ prof_logging_state_t prof_logging_state = prof_logging_state_stopped; #ifdef JEMALLOC_JET static bool prof_log_dummy = false; #endif /* Incremented for every log file that is output. */ static uint64_t log_seq = 0; static char log_filename[ /* Minimize memory bloat for non-prof builds. */ #ifdef JEMALLOC_PROF PATH_MAX + #endif 1]; /* Timestamp for most recent call to log_start(). */ static nstime_t log_start_timestamp = NSTIME_ZERO_INITIALIZER; /* Increment these when adding to the log_bt and log_thr linked lists. */ static size_t log_bt_index = 0; static size_t log_thr_index = 0; /* Linked list node definitions. These are only used in prof.c. */ typedef struct prof_bt_node_s prof_bt_node_t; struct prof_bt_node_s { prof_bt_node_t *next; size_t index; prof_bt_t bt; /* Variable size backtrace vector pointed to by bt. */ void *vec[1]; }; typedef struct prof_thr_node_s prof_thr_node_t; struct prof_thr_node_s { prof_thr_node_t *next; size_t index; uint64_t thr_uid; /* Variable size based on thr_name_sz. */ char name[1]; }; typedef struct prof_alloc_node_s prof_alloc_node_t; /* This is output when logging sampled allocations. */ struct prof_alloc_node_s { prof_alloc_node_t *next; /* Indices into an array of thread data. */ size_t alloc_thr_ind; size_t free_thr_ind; /* Indices into an array of backtraces. */ size_t alloc_bt_ind; size_t free_bt_ind; uint64_t alloc_time_ns; uint64_t free_time_ns; size_t usize; }; /* * Created on the first call to prof_log_start and deleted on prof_log_stop. * These are the backtraces and threads that have already been logged by an * allocation. */ static bool log_tables_initialized = false; static ckh_t log_bt_node_set; static ckh_t log_thr_node_set; /* Store linked lists for logged data. */ static prof_bt_node_t *log_bt_first = NULL; static prof_bt_node_t *log_bt_last = NULL; static prof_thr_node_t *log_thr_first = NULL; static prof_thr_node_t *log_thr_last = NULL; static prof_alloc_node_t *log_alloc_first = NULL; static prof_alloc_node_t *log_alloc_last = NULL; /* Protects the prof_logging_state and any log_{...} variable. */ static malloc_mutex_t log_mtx; /* * Table of mutexes that are shared among gctx's. These are leaf locks, so * there is no problem with using them for more than one gctx at the same time. * The primary motivation for this sharing though is that gctx's are ephemeral, * and destroying mutexes causes complications for systems that allocate when * creating/destroying mutexes. */ static malloc_mutex_t *gctx_locks; static atomic_u_t cum_gctxs; /* Atomic counter. */ /* * Table of mutexes that are shared among tdata's. No operations require * holding multiple tdata locks, so there is no problem with using them for more * than one tdata at the same time, even though a gctx lock may be acquired * while holding a tdata lock. */ static malloc_mutex_t *tdata_locks; /* * Global hash of (prof_bt_t *)-->(prof_gctx_t *). This is the master data * structure that knows about all backtraces currently captured. */ static ckh_t bt2gctx; /* Non static to enable profiling. */ malloc_mutex_t bt2gctx_mtx; /* * Tree of all extant prof_tdata_t structures, regardless of state, * {attached,detached,expired}. */ static prof_tdata_tree_t tdatas; static malloc_mutex_t tdatas_mtx; static uint64_t next_thr_uid; static malloc_mutex_t next_thr_uid_mtx; static malloc_mutex_t prof_dump_seq_mtx; static uint64_t prof_dump_seq; static uint64_t prof_dump_iseq; static uint64_t prof_dump_mseq; static uint64_t prof_dump_useq; /* * This buffer is rather large for stack allocation, so use a single buffer for * all profile dumps. */ static malloc_mutex_t prof_dump_mtx; static char prof_dump_buf[ /* Minimize memory bloat for non-prof builds. */ #ifdef JEMALLOC_PROF PROF_DUMP_BUFSIZE #else 1 #endif ]; static size_t prof_dump_buf_end; static int prof_dump_fd; /* Do not dump any profiles until bootstrapping is complete. */ static bool prof_booted = false; /******************************************************************************/ /* * Function prototypes for static functions that are referenced prior to * definition. */ static bool prof_tctx_should_destroy(tsdn_t *tsdn, prof_tctx_t *tctx); static void prof_tctx_destroy(tsd_t *tsd, prof_tctx_t *tctx); static bool prof_tdata_should_destroy(tsdn_t *tsdn, prof_tdata_t *tdata, bool even_if_attached); static void prof_tdata_destroy(tsd_t *tsd, prof_tdata_t *tdata, bool even_if_attached); static char *prof_thread_name_alloc(tsdn_t *tsdn, const char *thread_name); /* Hashtable functions for log_bt_node_set and log_thr_node_set. */ static void prof_thr_node_hash(const void *key, size_t r_hash[2]); static bool prof_thr_node_keycomp(const void *k1, const void *k2); static void prof_bt_node_hash(const void *key, size_t r_hash[2]); static bool prof_bt_node_keycomp(const void *k1, const void *k2); /******************************************************************************/ /* Red-black trees. */ static int prof_tctx_comp(const prof_tctx_t *a, const prof_tctx_t *b) { uint64_t a_thr_uid = a->thr_uid; uint64_t b_thr_uid = b->thr_uid; int ret = (a_thr_uid > b_thr_uid) - (a_thr_uid < b_thr_uid); if (ret == 0) { uint64_t a_thr_discrim = a->thr_discrim; uint64_t b_thr_discrim = b->thr_discrim; ret = (a_thr_discrim > b_thr_discrim) - (a_thr_discrim < b_thr_discrim); if (ret == 0) { uint64_t a_tctx_uid = a->tctx_uid; uint64_t b_tctx_uid = b->tctx_uid; ret = (a_tctx_uid > b_tctx_uid) - (a_tctx_uid < b_tctx_uid); } } return ret; } rb_gen(static UNUSED, tctx_tree_, prof_tctx_tree_t, prof_tctx_t, tctx_link, prof_tctx_comp) static int prof_gctx_comp(const prof_gctx_t *a, const prof_gctx_t *b) { unsigned a_len = a->bt.len; unsigned b_len = b->bt.len; unsigned comp_len = (a_len < b_len) ? a_len : b_len; int ret = memcmp(a->bt.vec, b->bt.vec, comp_len * sizeof(void *)); if (ret == 0) { ret = (a_len > b_len) - (a_len < b_len); } return ret; } rb_gen(static UNUSED, gctx_tree_, prof_gctx_tree_t, prof_gctx_t, dump_link, prof_gctx_comp) static int prof_tdata_comp(const prof_tdata_t *a, const prof_tdata_t *b) { int ret; uint64_t a_uid = a->thr_uid; uint64_t b_uid = b->thr_uid; ret = ((a_uid > b_uid) - (a_uid < b_uid)); if (ret == 0) { uint64_t a_discrim = a->thr_discrim; uint64_t b_discrim = b->thr_discrim; ret = ((a_discrim > b_discrim) - (a_discrim < b_discrim)); } return ret; } rb_gen(static UNUSED, tdata_tree_, prof_tdata_tree_t, prof_tdata_t, tdata_link, prof_tdata_comp) /******************************************************************************/ void prof_alloc_rollback(tsd_t *tsd, prof_tctx_t *tctx, bool updated) { prof_tdata_t *tdata; cassert(config_prof); if (updated) { /* * Compute a new sample threshold. This isn't very important in * practice, because this function is rarely executed, so the * potential for sample bias is minimal except in contrived * programs. */ tdata = prof_tdata_get(tsd, true); if (tdata != NULL) { prof_sample_threshold_update(tdata); } } if ((uintptr_t)tctx > (uintptr_t)1U) { malloc_mutex_lock(tsd_tsdn(tsd), tctx->tdata->lock); tctx->prepared = false; if (prof_tctx_should_destroy(tsd_tsdn(tsd), tctx)) { prof_tctx_destroy(tsd, tctx); } else { malloc_mutex_unlock(tsd_tsdn(tsd), tctx->tdata->lock); } } } void prof_malloc_sample_object(tsdn_t *tsdn, const void *ptr, size_t usize, prof_tctx_t *tctx) { prof_tctx_set(tsdn, ptr, usize, NULL, tctx); /* Get the current time and set this in the extent_t. We'll read this * when free() is called. */ nstime_t t = NSTIME_ZERO_INITIALIZER; nstime_update(&t); prof_alloc_time_set(tsdn, ptr, NULL, t); malloc_mutex_lock(tsdn, tctx->tdata->lock); tctx->cnts.curobjs++; tctx->cnts.curbytes += usize; if (opt_prof_accum) { tctx->cnts.accumobjs++; tctx->cnts.accumbytes += usize; } tctx->prepared = false; malloc_mutex_unlock(tsdn, tctx->tdata->lock); } static size_t prof_log_bt_index(tsd_t *tsd, prof_bt_t *bt) { assert(prof_logging_state == prof_logging_state_started); malloc_mutex_assert_owner(tsd_tsdn(tsd), &log_mtx); prof_bt_node_t dummy_node; dummy_node.bt = *bt; prof_bt_node_t *node; /* See if this backtrace is already cached in the table. */ if (ckh_search(&log_bt_node_set, (void *)(&dummy_node), (void **)(&node), NULL)) { size_t sz = offsetof(prof_bt_node_t, vec) + (bt->len * sizeof(void *)); prof_bt_node_t *new_node = (prof_bt_node_t *) ialloc(tsd, sz, sz_size2index(sz), false, true); if (log_bt_first == NULL) { log_bt_first = new_node; log_bt_last = new_node; } else { log_bt_last->next = new_node; log_bt_last = new_node; } new_node->next = NULL; new_node->index = log_bt_index; /* * Copy the backtrace: bt is inside a tdata or gctx, which * might die before prof_log_stop is called. */ new_node->bt.len = bt->len; memcpy(new_node->vec, bt->vec, bt->len * sizeof(void *)); new_node->bt.vec = new_node->vec; log_bt_index++; ckh_insert(tsd, &log_bt_node_set, (void *)new_node, NULL); return new_node->index; } else { return node->index; } } static size_t prof_log_thr_index(tsd_t *tsd, uint64_t thr_uid, const char *name) { assert(prof_logging_state == prof_logging_state_started); malloc_mutex_assert_owner(tsd_tsdn(tsd), &log_mtx); prof_thr_node_t dummy_node; dummy_node.thr_uid = thr_uid; prof_thr_node_t *node; /* See if this thread is already cached in the table. */ if (ckh_search(&log_thr_node_set, (void *)(&dummy_node), (void **)(&node), NULL)) { size_t sz = offsetof(prof_thr_node_t, name) + strlen(name) + 1; prof_thr_node_t *new_node = (prof_thr_node_t *) ialloc(tsd, sz, sz_size2index(sz), false, true); if (log_thr_first == NULL) { log_thr_first = new_node; log_thr_last = new_node; } else { log_thr_last->next = new_node; log_thr_last = new_node; } new_node->next = NULL; new_node->index = log_thr_index; new_node->thr_uid = thr_uid; strcpy(new_node->name, name); log_thr_index++; ckh_insert(tsd, &log_thr_node_set, (void *)new_node, NULL); return new_node->index; } else { return node->index; } } static void prof_try_log(tsd_t *tsd, const void *ptr, size_t usize, prof_tctx_t *tctx) { malloc_mutex_assert_owner(tsd_tsdn(tsd), tctx->tdata->lock); prof_tdata_t *cons_tdata = prof_tdata_get(tsd, false); if (cons_tdata == NULL) { /* * We decide not to log these allocations. cons_tdata will be * NULL only when the current thread is in a weird state (e.g. * it's being destroyed). */ return; } malloc_mutex_lock(tsd_tsdn(tsd), &log_mtx); if (prof_logging_state != prof_logging_state_started) { goto label_done; } if (!log_tables_initialized) { bool err1 = ckh_new(tsd, &log_bt_node_set, PROF_CKH_MINITEMS, prof_bt_node_hash, prof_bt_node_keycomp); bool err2 = ckh_new(tsd, &log_thr_node_set, PROF_CKH_MINITEMS, prof_thr_node_hash, prof_thr_node_keycomp); if (err1 || err2) { goto label_done; } log_tables_initialized = true; } nstime_t alloc_time = prof_alloc_time_get(tsd_tsdn(tsd), ptr, (alloc_ctx_t *)NULL); nstime_t free_time = NSTIME_ZERO_INITIALIZER; nstime_update(&free_time); prof_alloc_node_t *new_node = (prof_alloc_node_t *) ialloc(tsd, sizeof(prof_alloc_node_t), sz_size2index(sizeof(prof_alloc_node_t)), false, true); const char *prod_thr_name = (tctx->tdata->thread_name == NULL)? "" : tctx->tdata->thread_name; const char *cons_thr_name = prof_thread_name_get(tsd); prof_bt_t bt; /* Initialize the backtrace, using the buffer in tdata to store it. */ bt_init(&bt, cons_tdata->vec); prof_backtrace(&bt); prof_bt_t *cons_bt = &bt; /* We haven't destroyed tctx yet, so gctx should be good to read. */ prof_bt_t *prod_bt = &tctx->gctx->bt; new_node->next = NULL; new_node->alloc_thr_ind = prof_log_thr_index(tsd, tctx->tdata->thr_uid, prod_thr_name); new_node->free_thr_ind = prof_log_thr_index(tsd, cons_tdata->thr_uid, cons_thr_name); new_node->alloc_bt_ind = prof_log_bt_index(tsd, prod_bt); new_node->free_bt_ind = prof_log_bt_index(tsd, cons_bt); new_node->alloc_time_ns = nstime_ns(&alloc_time); new_node->free_time_ns = nstime_ns(&free_time); new_node->usize = usize; if (log_alloc_first == NULL) { log_alloc_first = new_node; log_alloc_last = new_node; } else { log_alloc_last->next = new_node; log_alloc_last = new_node; } label_done: malloc_mutex_unlock(tsd_tsdn(tsd), &log_mtx); } void prof_free_sampled_object(tsd_t *tsd, const void *ptr, size_t usize, prof_tctx_t *tctx) { malloc_mutex_lock(tsd_tsdn(tsd), tctx->tdata->lock); assert(tctx->cnts.curobjs > 0); assert(tctx->cnts.curbytes >= usize); tctx->cnts.curobjs--; tctx->cnts.curbytes -= usize; prof_try_log(tsd, ptr, usize, tctx); if (prof_tctx_should_destroy(tsd_tsdn(tsd), tctx)) { prof_tctx_destroy(tsd, tctx); } else { malloc_mutex_unlock(tsd_tsdn(tsd), tctx->tdata->lock); } } void bt_init(prof_bt_t *bt, void **vec) { cassert(config_prof); bt->vec = vec; bt->len = 0; } static void prof_enter(tsd_t *tsd, prof_tdata_t *tdata) { cassert(config_prof); assert(tdata == prof_tdata_get(tsd, false)); if (tdata != NULL) { assert(!tdata->enq); tdata->enq = true; } malloc_mutex_lock(tsd_tsdn(tsd), &bt2gctx_mtx); } static void prof_leave(tsd_t *tsd, prof_tdata_t *tdata) { cassert(config_prof); assert(tdata == prof_tdata_get(tsd, false)); malloc_mutex_unlock(tsd_tsdn(tsd), &bt2gctx_mtx); if (tdata != NULL) { bool idump, gdump; assert(tdata->enq); tdata->enq = false; idump = tdata->enq_idump; tdata->enq_idump = false; gdump = tdata->enq_gdump; tdata->enq_gdump = false; if (idump) { prof_idump(tsd_tsdn(tsd)); } if (gdump) { prof_gdump(tsd_tsdn(tsd)); } } } #ifdef JEMALLOC_PROF_LIBUNWIND void prof_backtrace(prof_bt_t *bt) { int nframes; cassert(config_prof); assert(bt->len == 0); assert(bt->vec != NULL); nframes = unw_backtrace(bt->vec, PROF_BT_MAX); if (nframes <= 0) { return; } bt->len = nframes; } #elif (defined(JEMALLOC_PROF_LIBGCC)) static _Unwind_Reason_Code prof_unwind_init_callback(struct _Unwind_Context *context, void *arg) { cassert(config_prof); return _URC_NO_REASON; } static _Unwind_Reason_Code prof_unwind_callback(struct _Unwind_Context *context, void *arg) { prof_unwind_data_t *data = (prof_unwind_data_t *)arg; void *ip; cassert(config_prof); ip = (void *)_Unwind_GetIP(context); if (ip == NULL) { return _URC_END_OF_STACK; } data->bt->vec[data->bt->len] = ip; data->bt->len++; if (data->bt->len == data->max) { return _URC_END_OF_STACK; } return _URC_NO_REASON; } void prof_backtrace(prof_bt_t *bt) { prof_unwind_data_t data = {bt, PROF_BT_MAX}; cassert(config_prof); _Unwind_Backtrace(prof_unwind_callback, &data); } #elif (defined(JEMALLOC_PROF_GCC)) void prof_backtrace(prof_bt_t *bt) { #define BT_FRAME(i) \ if ((i) < PROF_BT_MAX) { \ void *p; \ if (__builtin_frame_address(i) == 0) { \ return; \ } \ p = __builtin_return_address(i); \ if (p == NULL) { \ return; \ } \ bt->vec[(i)] = p; \ bt->len = (i) + 1; \ } else { \ return; \ } cassert(config_prof); BT_FRAME(0) BT_FRAME(1) BT_FRAME(2) BT_FRAME(3) BT_FRAME(4) BT_FRAME(5) BT_FRAME(6) BT_FRAME(7) BT_FRAME(8) BT_FRAME(9) BT_FRAME(10) BT_FRAME(11) BT_FRAME(12) BT_FRAME(13) BT_FRAME(14) BT_FRAME(15) BT_FRAME(16) BT_FRAME(17) BT_FRAME(18) BT_FRAME(19) BT_FRAME(20) BT_FRAME(21) BT_FRAME(22) BT_FRAME(23) BT_FRAME(24) BT_FRAME(25) BT_FRAME(26) BT_FRAME(27) BT_FRAME(28) BT_FRAME(29) BT_FRAME(30) BT_FRAME(31) BT_FRAME(32) BT_FRAME(33) BT_FRAME(34) BT_FRAME(35) BT_FRAME(36) BT_FRAME(37) BT_FRAME(38) BT_FRAME(39) BT_FRAME(40) BT_FRAME(41) BT_FRAME(42) BT_FRAME(43) BT_FRAME(44) BT_FRAME(45) BT_FRAME(46) BT_FRAME(47) BT_FRAME(48) BT_FRAME(49) BT_FRAME(50) BT_FRAME(51) BT_FRAME(52) BT_FRAME(53) BT_FRAME(54) BT_FRAME(55) BT_FRAME(56) BT_FRAME(57) BT_FRAME(58) BT_FRAME(59) BT_FRAME(60) BT_FRAME(61) BT_FRAME(62) BT_FRAME(63) BT_FRAME(64) BT_FRAME(65) BT_FRAME(66) BT_FRAME(67) BT_FRAME(68) BT_FRAME(69) BT_FRAME(70) BT_FRAME(71) BT_FRAME(72) BT_FRAME(73) BT_FRAME(74) BT_FRAME(75) BT_FRAME(76) BT_FRAME(77) BT_FRAME(78) BT_FRAME(79) BT_FRAME(80) BT_FRAME(81) BT_FRAME(82) BT_FRAME(83) BT_FRAME(84) BT_FRAME(85) BT_FRAME(86) BT_FRAME(87) BT_FRAME(88) BT_FRAME(89) BT_FRAME(90) BT_FRAME(91) BT_FRAME(92) BT_FRAME(93) BT_FRAME(94) BT_FRAME(95) BT_FRAME(96) BT_FRAME(97) BT_FRAME(98) BT_FRAME(99) BT_FRAME(100) BT_FRAME(101) BT_FRAME(102) BT_FRAME(103) BT_FRAME(104) BT_FRAME(105) BT_FRAME(106) BT_FRAME(107) BT_FRAME(108) BT_FRAME(109) BT_FRAME(110) BT_FRAME(111) BT_FRAME(112) BT_FRAME(113) BT_FRAME(114) BT_FRAME(115) BT_FRAME(116) BT_FRAME(117) BT_FRAME(118) BT_FRAME(119) BT_FRAME(120) BT_FRAME(121) BT_FRAME(122) BT_FRAME(123) BT_FRAME(124) BT_FRAME(125) BT_FRAME(126) BT_FRAME(127) #undef BT_FRAME } #else void prof_backtrace(prof_bt_t *bt) { cassert(config_prof); not_reached(); } #endif static malloc_mutex_t * prof_gctx_mutex_choose(void) { unsigned ngctxs = atomic_fetch_add_u(&cum_gctxs, 1, ATOMIC_RELAXED); return &gctx_locks[(ngctxs - 1) % PROF_NCTX_LOCKS]; } static malloc_mutex_t * prof_tdata_mutex_choose(uint64_t thr_uid) { return &tdata_locks[thr_uid % PROF_NTDATA_LOCKS]; } static prof_gctx_t * prof_gctx_create(tsdn_t *tsdn, prof_bt_t *bt) { /* * Create a single allocation that has space for vec of length bt->len. */ size_t size = offsetof(prof_gctx_t, vec) + (bt->len * sizeof(void *)); prof_gctx_t *gctx = (prof_gctx_t *)iallocztm(tsdn, size, sz_size2index(size), false, NULL, true, arena_get(TSDN_NULL, 0, true), true); if (gctx == NULL) { return NULL; } gctx->lock = prof_gctx_mutex_choose(); /* * Set nlimbo to 1, in order to avoid a race condition with * prof_tctx_destroy()/prof_gctx_try_destroy(). */ gctx->nlimbo = 1; tctx_tree_new(&gctx->tctxs); /* Duplicate bt. */ memcpy(gctx->vec, bt->vec, bt->len * sizeof(void *)); gctx->bt.vec = gctx->vec; gctx->bt.len = bt->len; return gctx; } static void prof_gctx_try_destroy(tsd_t *tsd, prof_tdata_t *tdata_self, prof_gctx_t *gctx, prof_tdata_t *tdata) { cassert(config_prof); /* * Check that gctx is still unused by any thread cache before destroying * it. prof_lookup() increments gctx->nlimbo in order to avoid a race * condition with this function, as does prof_tctx_destroy() in order to * avoid a race between the main body of prof_tctx_destroy() and entry * into this function. */ prof_enter(tsd, tdata_self); malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock); assert(gctx->nlimbo != 0); if (tctx_tree_empty(&gctx->tctxs) && gctx->nlimbo == 1) { /* Remove gctx from bt2gctx. */ if (ckh_remove(tsd, &bt2gctx, &gctx->bt, NULL, NULL)) { not_reached(); } prof_leave(tsd, tdata_self); /* Destroy gctx. */ malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock); idalloctm(tsd_tsdn(tsd), gctx, NULL, NULL, true, true); } else { /* * Compensate for increment in prof_tctx_destroy() or * prof_lookup(). */ gctx->nlimbo--; malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock); prof_leave(tsd, tdata_self); } } static bool prof_tctx_should_destroy(tsdn_t *tsdn, prof_tctx_t *tctx) { malloc_mutex_assert_owner(tsdn, tctx->tdata->lock); if (opt_prof_accum) { return false; } if (tctx->cnts.curobjs != 0) { return false; } if (tctx->prepared) { return false; } return true; } static bool prof_gctx_should_destroy(prof_gctx_t *gctx) { if (opt_prof_accum) { return false; } if (!tctx_tree_empty(&gctx->tctxs)) { return false; } if (gctx->nlimbo != 0) { return false; } return true; } static void prof_tctx_destroy(tsd_t *tsd, prof_tctx_t *tctx) { prof_tdata_t *tdata = tctx->tdata; prof_gctx_t *gctx = tctx->gctx; bool destroy_tdata, destroy_tctx, destroy_gctx; malloc_mutex_assert_owner(tsd_tsdn(tsd), tctx->tdata->lock); assert(tctx->cnts.curobjs == 0); assert(tctx->cnts.curbytes == 0); assert(!opt_prof_accum); assert(tctx->cnts.accumobjs == 0); assert(tctx->cnts.accumbytes == 0); ckh_remove(tsd, &tdata->bt2tctx, &gctx->bt, NULL, NULL); destroy_tdata = prof_tdata_should_destroy(tsd_tsdn(tsd), tdata, false); malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock); malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock); switch (tctx->state) { case prof_tctx_state_nominal: tctx_tree_remove(&gctx->tctxs, tctx); destroy_tctx = true; if (prof_gctx_should_destroy(gctx)) { /* * Increment gctx->nlimbo in order to keep another * thread from winning the race to destroy gctx while * this one has gctx->lock dropped. Without this, it * would be possible for another thread to: * * 1) Sample an allocation associated with gctx. * 2) Deallocate the sampled object. * 3) Successfully prof_gctx_try_destroy(gctx). * * The result would be that gctx no longer exists by the * time this thread accesses it in * prof_gctx_try_destroy(). */ gctx->nlimbo++; destroy_gctx = true; } else { destroy_gctx = false; } break; case prof_tctx_state_dumping: /* * A dumping thread needs tctx to remain valid until dumping * has finished. Change state such that the dumping thread will * complete destruction during a late dump iteration phase. */ tctx->state = prof_tctx_state_purgatory; destroy_tctx = false; destroy_gctx = false; break; default: not_reached(); destroy_tctx = false; destroy_gctx = false; } malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock); if (destroy_gctx) { prof_gctx_try_destroy(tsd, prof_tdata_get(tsd, false), gctx, tdata); } malloc_mutex_assert_not_owner(tsd_tsdn(tsd), tctx->tdata->lock); if (destroy_tdata) { prof_tdata_destroy(tsd, tdata, false); } if (destroy_tctx) { idalloctm(tsd_tsdn(tsd), tctx, NULL, NULL, true, true); } } static bool prof_lookup_global(tsd_t *tsd, prof_bt_t *bt, prof_tdata_t *tdata, void **p_btkey, prof_gctx_t **p_gctx, bool *p_new_gctx) { union { prof_gctx_t *p; void *v; } gctx, tgctx; union { prof_bt_t *p; void *v; } btkey; bool new_gctx; prof_enter(tsd, tdata); if (ckh_search(&bt2gctx, bt, &btkey.v, &gctx.v)) { /* bt has never been seen before. Insert it. */ prof_leave(tsd, tdata); tgctx.p = prof_gctx_create(tsd_tsdn(tsd), bt); if (tgctx.v == NULL) { return true; } prof_enter(tsd, tdata); if (ckh_search(&bt2gctx, bt, &btkey.v, &gctx.v)) { gctx.p = tgctx.p; btkey.p = &gctx.p->bt; if (ckh_insert(tsd, &bt2gctx, btkey.v, gctx.v)) { /* OOM. */ prof_leave(tsd, tdata); idalloctm(tsd_tsdn(tsd), gctx.v, NULL, NULL, true, true); return true; } new_gctx = true; } else { new_gctx = false; } } else { tgctx.v = NULL; new_gctx = false; } if (!new_gctx) { /* * Increment nlimbo, in order to avoid a race condition with * prof_tctx_destroy()/prof_gctx_try_destroy(). */ malloc_mutex_lock(tsd_tsdn(tsd), gctx.p->lock); gctx.p->nlimbo++; malloc_mutex_unlock(tsd_tsdn(tsd), gctx.p->lock); new_gctx = false; if (tgctx.v != NULL) { /* Lost race to insert. */ idalloctm(tsd_tsdn(tsd), tgctx.v, NULL, NULL, true, true); } } prof_leave(tsd, tdata); *p_btkey = btkey.v; *p_gctx = gctx.p; *p_new_gctx = new_gctx; return false; } prof_tctx_t * prof_lookup(tsd_t *tsd, prof_bt_t *bt) { union { prof_tctx_t *p; void *v; } ret; prof_tdata_t *tdata; bool not_found; cassert(config_prof); tdata = prof_tdata_get(tsd, false); if (tdata == NULL) { return NULL; } malloc_mutex_lock(tsd_tsdn(tsd), tdata->lock); not_found = ckh_search(&tdata->bt2tctx, bt, NULL, &ret.v); if (!not_found) { /* Note double negative! */ ret.p->prepared = true; } malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock); if (not_found) { void *btkey; prof_gctx_t *gctx; bool new_gctx, error; /* * This thread's cache lacks bt. Look for it in the global * cache. */ if (prof_lookup_global(tsd, bt, tdata, &btkey, &gctx, &new_gctx)) { return NULL; } /* Link a prof_tctx_t into gctx for this thread. */ ret.v = iallocztm(tsd_tsdn(tsd), sizeof(prof_tctx_t), sz_size2index(sizeof(prof_tctx_t)), false, NULL, true, arena_ichoose(tsd, NULL), true); if (ret.p == NULL) { if (new_gctx) { prof_gctx_try_destroy(tsd, tdata, gctx, tdata); } return NULL; } ret.p->tdata = tdata; ret.p->thr_uid = tdata->thr_uid; ret.p->thr_discrim = tdata->thr_discrim; memset(&ret.p->cnts, 0, sizeof(prof_cnt_t)); ret.p->gctx = gctx; ret.p->tctx_uid = tdata->tctx_uid_next++; ret.p->prepared = true; ret.p->state = prof_tctx_state_initializing; malloc_mutex_lock(tsd_tsdn(tsd), tdata->lock); error = ckh_insert(tsd, &tdata->bt2tctx, btkey, ret.v); malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock); if (error) { if (new_gctx) { prof_gctx_try_destroy(tsd, tdata, gctx, tdata); } idalloctm(tsd_tsdn(tsd), ret.v, NULL, NULL, true, true); return NULL; } malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock); ret.p->state = prof_tctx_state_nominal; tctx_tree_insert(&gctx->tctxs, ret.p); gctx->nlimbo--; malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock); } return ret.p; } /* * The bodies of this function and prof_leakcheck() are compiled out unless heap * profiling is enabled, so that it is possible to compile jemalloc with * floating point support completely disabled. Avoiding floating point code is * important on memory-constrained systems, but it also enables a workaround for * versions of glibc that don't properly save/restore floating point registers * during dynamic lazy symbol loading (which internally calls into whatever * malloc implementation happens to be integrated into the application). Note * that some compilers (e.g. gcc 4.8) may use floating point registers for fast * memory moves, so jemalloc must be compiled with such optimizations disabled * (e.g. * -mno-sse) in order for the workaround to be complete. */ void prof_sample_threshold_update(prof_tdata_t *tdata) { #ifdef JEMALLOC_PROF uint64_t r; double u; if (!config_prof) { return; } if (lg_prof_sample == 0) { tdata->bytes_until_sample = 0; return; } /* * Compute sample interval as a geometrically distributed random * variable with mean (2^lg_prof_sample). * * __ __ * | log(u) | 1 * tdata->bytes_until_sample = | -------- |, where p = --------------- * | log(1-p) | lg_prof_sample * 2 * * For more information on the math, see: * * Non-Uniform Random Variate Generation * Luc Devroye * Springer-Verlag, New York, 1986 * pp 500 * (http://luc.devroye.org/rnbookindex.html) */ r = prng_lg_range_u64(&tdata->prng_state, 53); u = (double)r * (1.0/9007199254740992.0L); tdata->bytes_until_sample = (uint64_t)(log(u) / log(1.0 - (1.0 / (double)((uint64_t)1U << lg_prof_sample)))) + (uint64_t)1U; #endif } #ifdef JEMALLOC_JET static prof_tdata_t * prof_tdata_count_iter(prof_tdata_tree_t *tdatas, prof_tdata_t *tdata, void *arg) { size_t *tdata_count = (size_t *)arg; (*tdata_count)++; return NULL; } size_t prof_tdata_count(void) { size_t tdata_count = 0; tsdn_t *tsdn; tsdn = tsdn_fetch(); malloc_mutex_lock(tsdn, &tdatas_mtx); tdata_tree_iter(&tdatas, NULL, prof_tdata_count_iter, (void *)&tdata_count); malloc_mutex_unlock(tsdn, &tdatas_mtx); return tdata_count; } size_t prof_bt_count(void) { size_t bt_count; tsd_t *tsd; prof_tdata_t *tdata; tsd = tsd_fetch(); tdata = prof_tdata_get(tsd, false); if (tdata == NULL) { return 0; } malloc_mutex_lock(tsd_tsdn(tsd), &bt2gctx_mtx); bt_count = ckh_count(&bt2gctx); malloc_mutex_unlock(tsd_tsdn(tsd), &bt2gctx_mtx); return bt_count; } #endif static int prof_dump_open_impl(bool propagate_err, const char *filename) { int fd; fd = creat(filename, 0644); if (fd == -1 && !propagate_err) { malloc_printf(": creat(\"%s\"), 0644) failed\n", filename); if (opt_abort) { abort(); } } return fd; } prof_dump_open_t *JET_MUTABLE prof_dump_open = prof_dump_open_impl; static bool prof_dump_flush(bool propagate_err) { bool ret = false; ssize_t err; cassert(config_prof); err = malloc_write_fd(prof_dump_fd, prof_dump_buf, prof_dump_buf_end); if (err == -1) { if (!propagate_err) { malloc_write(": write() failed during heap " "profile flush\n"); if (opt_abort) { abort(); } } ret = true; } prof_dump_buf_end = 0; return ret; } static bool prof_dump_close(bool propagate_err) { bool ret; assert(prof_dump_fd != -1); ret = prof_dump_flush(propagate_err); close(prof_dump_fd); prof_dump_fd = -1; return ret; } static bool prof_dump_write(bool propagate_err, const char *s) { size_t i, slen, n; cassert(config_prof); i = 0; slen = strlen(s); while (i < slen) { /* Flush the buffer if it is full. */ if (prof_dump_buf_end == PROF_DUMP_BUFSIZE) { if (prof_dump_flush(propagate_err) && propagate_err) { return true; } } if (prof_dump_buf_end + slen <= PROF_DUMP_BUFSIZE) { /* Finish writing. */ n = slen - i; } else { /* Write as much of s as will fit. */ n = PROF_DUMP_BUFSIZE - prof_dump_buf_end; } memcpy(&prof_dump_buf[prof_dump_buf_end], &s[i], n); prof_dump_buf_end += n; i += n; } return false; } JEMALLOC_FORMAT_PRINTF(2, 3) static bool prof_dump_printf(bool propagate_err, const char *format, ...) { bool ret; va_list ap; char buf[PROF_PRINTF_BUFSIZE]; va_start(ap, format); malloc_vsnprintf(buf, sizeof(buf), format, ap); va_end(ap); ret = prof_dump_write(propagate_err, buf); return ret; } static void prof_tctx_merge_tdata(tsdn_t *tsdn, prof_tctx_t *tctx, prof_tdata_t *tdata) { malloc_mutex_assert_owner(tsdn, tctx->tdata->lock); malloc_mutex_lock(tsdn, tctx->gctx->lock); switch (tctx->state) { case prof_tctx_state_initializing: malloc_mutex_unlock(tsdn, tctx->gctx->lock); return; case prof_tctx_state_nominal: tctx->state = prof_tctx_state_dumping; malloc_mutex_unlock(tsdn, tctx->gctx->lock); memcpy(&tctx->dump_cnts, &tctx->cnts, sizeof(prof_cnt_t)); tdata->cnt_summed.curobjs += tctx->dump_cnts.curobjs; tdata->cnt_summed.curbytes += tctx->dump_cnts.curbytes; if (opt_prof_accum) { tdata->cnt_summed.accumobjs += tctx->dump_cnts.accumobjs; tdata->cnt_summed.accumbytes += tctx->dump_cnts.accumbytes; } break; case prof_tctx_state_dumping: case prof_tctx_state_purgatory: not_reached(); } } static void prof_tctx_merge_gctx(tsdn_t *tsdn, prof_tctx_t *tctx, prof_gctx_t *gctx) { malloc_mutex_assert_owner(tsdn, gctx->lock); gctx->cnt_summed.curobjs += tctx->dump_cnts.curobjs; gctx->cnt_summed.curbytes += tctx->dump_cnts.curbytes; if (opt_prof_accum) { gctx->cnt_summed.accumobjs += tctx->dump_cnts.accumobjs; gctx->cnt_summed.accumbytes += tctx->dump_cnts.accumbytes; } } static prof_tctx_t * prof_tctx_merge_iter(prof_tctx_tree_t *tctxs, prof_tctx_t *tctx, void *arg) { tsdn_t *tsdn = (tsdn_t *)arg; malloc_mutex_assert_owner(tsdn, tctx->gctx->lock); switch (tctx->state) { case prof_tctx_state_nominal: /* New since dumping started; ignore. */ break; case prof_tctx_state_dumping: case prof_tctx_state_purgatory: prof_tctx_merge_gctx(tsdn, tctx, tctx->gctx); break; default: not_reached(); } return NULL; } struct prof_tctx_dump_iter_arg_s { tsdn_t *tsdn; bool propagate_err; }; static prof_tctx_t * prof_tctx_dump_iter(prof_tctx_tree_t *tctxs, prof_tctx_t *tctx, void *opaque) { struct prof_tctx_dump_iter_arg_s *arg = (struct prof_tctx_dump_iter_arg_s *)opaque; malloc_mutex_assert_owner(arg->tsdn, tctx->gctx->lock); switch (tctx->state) { case prof_tctx_state_initializing: case prof_tctx_state_nominal: /* Not captured by this dump. */ break; case prof_tctx_state_dumping: case prof_tctx_state_purgatory: if (prof_dump_printf(arg->propagate_err, " t%"FMTu64": %"FMTu64": %"FMTu64" [%"FMTu64": " "%"FMTu64"]\n", tctx->thr_uid, tctx->dump_cnts.curobjs, tctx->dump_cnts.curbytes, tctx->dump_cnts.accumobjs, tctx->dump_cnts.accumbytes)) { return tctx; } break; default: not_reached(); } return NULL; } static prof_tctx_t * prof_tctx_finish_iter(prof_tctx_tree_t *tctxs, prof_tctx_t *tctx, void *arg) { tsdn_t *tsdn = (tsdn_t *)arg; prof_tctx_t *ret; malloc_mutex_assert_owner(tsdn, tctx->gctx->lock); switch (tctx->state) { case prof_tctx_state_nominal: /* New since dumping started; ignore. */ break; case prof_tctx_state_dumping: tctx->state = prof_tctx_state_nominal; break; case prof_tctx_state_purgatory: ret = tctx; goto label_return; default: not_reached(); } ret = NULL; label_return: return ret; } static void prof_dump_gctx_prep(tsdn_t *tsdn, prof_gctx_t *gctx, prof_gctx_tree_t *gctxs) { cassert(config_prof); malloc_mutex_lock(tsdn, gctx->lock); /* * Increment nlimbo so that gctx won't go away before dump. * Additionally, link gctx into the dump list so that it is included in * prof_dump()'s second pass. */ gctx->nlimbo++; gctx_tree_insert(gctxs, gctx); memset(&gctx->cnt_summed, 0, sizeof(prof_cnt_t)); malloc_mutex_unlock(tsdn, gctx->lock); } struct prof_gctx_merge_iter_arg_s { tsdn_t *tsdn; size_t leak_ngctx; }; static prof_gctx_t * prof_gctx_merge_iter(prof_gctx_tree_t *gctxs, prof_gctx_t *gctx, void *opaque) { struct prof_gctx_merge_iter_arg_s *arg = (struct prof_gctx_merge_iter_arg_s *)opaque; malloc_mutex_lock(arg->tsdn, gctx->lock); tctx_tree_iter(&gctx->tctxs, NULL, prof_tctx_merge_iter, (void *)arg->tsdn); if (gctx->cnt_summed.curobjs != 0) { arg->leak_ngctx++; } malloc_mutex_unlock(arg->tsdn, gctx->lock); return NULL; } static void prof_gctx_finish(tsd_t *tsd, prof_gctx_tree_t *gctxs) { prof_tdata_t *tdata = prof_tdata_get(tsd, false); prof_gctx_t *gctx; /* * Standard tree iteration won't work here, because as soon as we * decrement gctx->nlimbo and unlock gctx, another thread can * concurrently destroy it, which will corrupt the tree. Therefore, * tear down the tree one node at a time during iteration. */ while ((gctx = gctx_tree_first(gctxs)) != NULL) { gctx_tree_remove(gctxs, gctx); malloc_mutex_lock(tsd_tsdn(tsd), gctx->lock); { prof_tctx_t *next; next = NULL; do { prof_tctx_t *to_destroy = tctx_tree_iter(&gctx->tctxs, next, prof_tctx_finish_iter, (void *)tsd_tsdn(tsd)); if (to_destroy != NULL) { next = tctx_tree_next(&gctx->tctxs, to_destroy); tctx_tree_remove(&gctx->tctxs, to_destroy); idalloctm(tsd_tsdn(tsd), to_destroy, NULL, NULL, true, true); } else { next = NULL; } } while (next != NULL); } gctx->nlimbo--; if (prof_gctx_should_destroy(gctx)) { gctx->nlimbo++; malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock); prof_gctx_try_destroy(tsd, tdata, gctx, tdata); } else { malloc_mutex_unlock(tsd_tsdn(tsd), gctx->lock); } } } struct prof_tdata_merge_iter_arg_s { tsdn_t *tsdn; prof_cnt_t cnt_all; }; static prof_tdata_t * prof_tdata_merge_iter(prof_tdata_tree_t *tdatas, prof_tdata_t *tdata, void *opaque) { struct prof_tdata_merge_iter_arg_s *arg = (struct prof_tdata_merge_iter_arg_s *)opaque; malloc_mutex_lock(arg->tsdn, tdata->lock); if (!tdata->expired) { size_t tabind; union { prof_tctx_t *p; void *v; } tctx; tdata->dumping = true; memset(&tdata->cnt_summed, 0, sizeof(prof_cnt_t)); for (tabind = 0; !ckh_iter(&tdata->bt2tctx, &tabind, NULL, &tctx.v);) { prof_tctx_merge_tdata(arg->tsdn, tctx.p, tdata); } arg->cnt_all.curobjs += tdata->cnt_summed.curobjs; arg->cnt_all.curbytes += tdata->cnt_summed.curbytes; if (opt_prof_accum) { arg->cnt_all.accumobjs += tdata->cnt_summed.accumobjs; arg->cnt_all.accumbytes += tdata->cnt_summed.accumbytes; } } else { tdata->dumping = false; } malloc_mutex_unlock(arg->tsdn, tdata->lock); return NULL; } static prof_tdata_t * prof_tdata_dump_iter(prof_tdata_tree_t *tdatas, prof_tdata_t *tdata, void *arg) { bool propagate_err = *(bool *)arg; if (!tdata->dumping) { return NULL; } if (prof_dump_printf(propagate_err, " t%"FMTu64": %"FMTu64": %"FMTu64" [%"FMTu64": %"FMTu64"]%s%s\n", tdata->thr_uid, tdata->cnt_summed.curobjs, tdata->cnt_summed.curbytes, tdata->cnt_summed.accumobjs, tdata->cnt_summed.accumbytes, (tdata->thread_name != NULL) ? " " : "", (tdata->thread_name != NULL) ? tdata->thread_name : "")) { return tdata; } return NULL; } static bool prof_dump_header_impl(tsdn_t *tsdn, bool propagate_err, const prof_cnt_t *cnt_all) { bool ret; if (prof_dump_printf(propagate_err, "heap_v2/%"FMTu64"\n" " t*: %"FMTu64": %"FMTu64" [%"FMTu64": %"FMTu64"]\n", ((uint64_t)1U << lg_prof_sample), cnt_all->curobjs, cnt_all->curbytes, cnt_all->accumobjs, cnt_all->accumbytes)) { return true; } malloc_mutex_lock(tsdn, &tdatas_mtx); ret = (tdata_tree_iter(&tdatas, NULL, prof_tdata_dump_iter, (void *)&propagate_err) != NULL); malloc_mutex_unlock(tsdn, &tdatas_mtx); return ret; } prof_dump_header_t *JET_MUTABLE prof_dump_header = prof_dump_header_impl; static bool prof_dump_gctx(tsdn_t *tsdn, bool propagate_err, prof_gctx_t *gctx, const prof_bt_t *bt, prof_gctx_tree_t *gctxs) { bool ret; unsigned i; struct prof_tctx_dump_iter_arg_s prof_tctx_dump_iter_arg; cassert(config_prof); malloc_mutex_assert_owner(tsdn, gctx->lock); /* Avoid dumping such gctx's that have no useful data. */ if ((!opt_prof_accum && gctx->cnt_summed.curobjs == 0) || (opt_prof_accum && gctx->cnt_summed.accumobjs == 0)) { assert(gctx->cnt_summed.curobjs == 0); assert(gctx->cnt_summed.curbytes == 0); assert(gctx->cnt_summed.accumobjs == 0); assert(gctx->cnt_summed.accumbytes == 0); ret = false; goto label_return; } if (prof_dump_printf(propagate_err, "@")) { ret = true; goto label_return; } for (i = 0; i < bt->len; i++) { if (prof_dump_printf(propagate_err, " %#"FMTxPTR, (uintptr_t)bt->vec[i])) { ret = true; goto label_return; } } if (prof_dump_printf(propagate_err, "\n" " t*: %"FMTu64": %"FMTu64" [%"FMTu64": %"FMTu64"]\n", gctx->cnt_summed.curobjs, gctx->cnt_summed.curbytes, gctx->cnt_summed.accumobjs, gctx->cnt_summed.accumbytes)) { ret = true; goto label_return; } prof_tctx_dump_iter_arg.tsdn = tsdn; prof_tctx_dump_iter_arg.propagate_err = propagate_err; if (tctx_tree_iter(&gctx->tctxs, NULL, prof_tctx_dump_iter, (void *)&prof_tctx_dump_iter_arg) != NULL) { ret = true; goto label_return; } ret = false; label_return: return ret; } #ifndef _WIN32 JEMALLOC_FORMAT_PRINTF(1, 2) static int prof_open_maps(const char *format, ...) { int mfd; va_list ap; char filename[PATH_MAX + 1]; va_start(ap, format); malloc_vsnprintf(filename, sizeof(filename), format, ap); va_end(ap); #if defined(O_CLOEXEC) mfd = open(filename, O_RDONLY | O_CLOEXEC); #else mfd = open(filename, O_RDONLY); if (mfd != -1) { fcntl(mfd, F_SETFD, fcntl(mfd, F_GETFD) | FD_CLOEXEC); } #endif return mfd; } #endif static int prof_getpid(void) { #ifdef _WIN32 return GetCurrentProcessId(); #else return getpid(); #endif } static bool prof_dump_maps(bool propagate_err) { bool ret; int mfd; cassert(config_prof); #ifdef __FreeBSD__ mfd = prof_open_maps("/proc/curproc/map"); #elif defined(_WIN32) mfd = -1; // Not implemented #else { int pid = prof_getpid(); mfd = prof_open_maps("/proc/%d/task/%d/maps", pid, pid); if (mfd == -1) { mfd = prof_open_maps("/proc/%d/maps", pid); } } #endif if (mfd != -1) { ssize_t nread; if (prof_dump_write(propagate_err, "\nMAPPED_LIBRARIES:\n") && propagate_err) { ret = true; goto label_return; } nread = 0; do { prof_dump_buf_end += nread; if (prof_dump_buf_end == PROF_DUMP_BUFSIZE) { /* Make space in prof_dump_buf before read(). */ if (prof_dump_flush(propagate_err) && propagate_err) { ret = true; goto label_return; } } nread = malloc_read_fd(mfd, &prof_dump_buf[prof_dump_buf_end], PROF_DUMP_BUFSIZE - prof_dump_buf_end); } while (nread > 0); } else { ret = true; goto label_return; } ret = false; label_return: if (mfd != -1) { close(mfd); } return ret; } /* * See prof_sample_threshold_update() comment for why the body of this function * is conditionally compiled. */ static void prof_leakcheck(const prof_cnt_t *cnt_all, size_t leak_ngctx, const char *filename) { #ifdef JEMALLOC_PROF /* * Scaling is equivalent AdjustSamples() in jeprof, but the result may * differ slightly from what jeprof reports, because here we scale the * summary values, whereas jeprof scales each context individually and * reports the sums of the scaled values. */ if (cnt_all->curbytes != 0) { double sample_period = (double)((uint64_t)1 << lg_prof_sample); double ratio = (((double)cnt_all->curbytes) / (double)cnt_all->curobjs) / sample_period; double scale_factor = 1.0 / (1.0 - exp(-ratio)); uint64_t curbytes = (uint64_t)round(((double)cnt_all->curbytes) * scale_factor); uint64_t curobjs = (uint64_t)round(((double)cnt_all->curobjs) * scale_factor); malloc_printf(": Leak approximation summary: ~%"FMTu64 " byte%s, ~%"FMTu64" object%s, >= %zu context%s\n", curbytes, (curbytes != 1) ? "s" : "", curobjs, (curobjs != 1) ? "s" : "", leak_ngctx, (leak_ngctx != 1) ? "s" : ""); malloc_printf( ": Run jeprof on \"%s\" for leak detail\n", filename); } #endif } struct prof_gctx_dump_iter_arg_s { tsdn_t *tsdn; bool propagate_err; }; static prof_gctx_t * prof_gctx_dump_iter(prof_gctx_tree_t *gctxs, prof_gctx_t *gctx, void *opaque) { prof_gctx_t *ret; struct prof_gctx_dump_iter_arg_s *arg = (struct prof_gctx_dump_iter_arg_s *)opaque; malloc_mutex_lock(arg->tsdn, gctx->lock); if (prof_dump_gctx(arg->tsdn, arg->propagate_err, gctx, &gctx->bt, gctxs)) { ret = gctx; goto label_return; } ret = NULL; label_return: malloc_mutex_unlock(arg->tsdn, gctx->lock); return ret; } static void prof_dump_prep(tsd_t *tsd, prof_tdata_t *tdata, struct prof_tdata_merge_iter_arg_s *prof_tdata_merge_iter_arg, struct prof_gctx_merge_iter_arg_s *prof_gctx_merge_iter_arg, prof_gctx_tree_t *gctxs) { size_t tabind; union { prof_gctx_t *p; void *v; } gctx; prof_enter(tsd, tdata); /* * Put gctx's in limbo and clear their counters in preparation for * summing. */ gctx_tree_new(gctxs); for (tabind = 0; !ckh_iter(&bt2gctx, &tabind, NULL, &gctx.v);) { prof_dump_gctx_prep(tsd_tsdn(tsd), gctx.p, gctxs); } /* * Iterate over tdatas, and for the non-expired ones snapshot their tctx * stats and merge them into the associated gctx's. */ prof_tdata_merge_iter_arg->tsdn = tsd_tsdn(tsd); memset(&prof_tdata_merge_iter_arg->cnt_all, 0, sizeof(prof_cnt_t)); malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx); tdata_tree_iter(&tdatas, NULL, prof_tdata_merge_iter, (void *)prof_tdata_merge_iter_arg); malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx); /* Merge tctx stats into gctx's. */ prof_gctx_merge_iter_arg->tsdn = tsd_tsdn(tsd); prof_gctx_merge_iter_arg->leak_ngctx = 0; gctx_tree_iter(gctxs, NULL, prof_gctx_merge_iter, (void *)prof_gctx_merge_iter_arg); prof_leave(tsd, tdata); } static bool prof_dump_file(tsd_t *tsd, bool propagate_err, const char *filename, bool leakcheck, prof_tdata_t *tdata, struct prof_tdata_merge_iter_arg_s *prof_tdata_merge_iter_arg, struct prof_gctx_merge_iter_arg_s *prof_gctx_merge_iter_arg, struct prof_gctx_dump_iter_arg_s *prof_gctx_dump_iter_arg, prof_gctx_tree_t *gctxs) { /* Create dump file. */ if ((prof_dump_fd = prof_dump_open(propagate_err, filename)) == -1) { return true; } /* Dump profile header. */ if (prof_dump_header(tsd_tsdn(tsd), propagate_err, &prof_tdata_merge_iter_arg->cnt_all)) { goto label_write_error; } /* Dump per gctx profile stats. */ prof_gctx_dump_iter_arg->tsdn = tsd_tsdn(tsd); prof_gctx_dump_iter_arg->propagate_err = propagate_err; if (gctx_tree_iter(gctxs, NULL, prof_gctx_dump_iter, (void *)prof_gctx_dump_iter_arg) != NULL) { goto label_write_error; } /* Dump /proc//maps if possible. */ if (prof_dump_maps(propagate_err)) { goto label_write_error; } if (prof_dump_close(propagate_err)) { return true; } return false; label_write_error: prof_dump_close(propagate_err); return true; } static bool prof_dump(tsd_t *tsd, bool propagate_err, const char *filename, bool leakcheck) { cassert(config_prof); assert(tsd_reentrancy_level_get(tsd) == 0); prof_tdata_t * tdata = prof_tdata_get(tsd, true); if (tdata == NULL) { return true; } pre_reentrancy(tsd, NULL); malloc_mutex_lock(tsd_tsdn(tsd), &prof_dump_mtx); prof_gctx_tree_t gctxs; struct prof_tdata_merge_iter_arg_s prof_tdata_merge_iter_arg; struct prof_gctx_merge_iter_arg_s prof_gctx_merge_iter_arg; struct prof_gctx_dump_iter_arg_s prof_gctx_dump_iter_arg; prof_dump_prep(tsd, tdata, &prof_tdata_merge_iter_arg, &prof_gctx_merge_iter_arg, &gctxs); bool err = prof_dump_file(tsd, propagate_err, filename, leakcheck, tdata, &prof_tdata_merge_iter_arg, &prof_gctx_merge_iter_arg, &prof_gctx_dump_iter_arg, &gctxs); prof_gctx_finish(tsd, &gctxs); malloc_mutex_unlock(tsd_tsdn(tsd), &prof_dump_mtx); post_reentrancy(tsd); if (err) { return true; } if (leakcheck) { prof_leakcheck(&prof_tdata_merge_iter_arg.cnt_all, prof_gctx_merge_iter_arg.leak_ngctx, filename); } return false; } #ifdef JEMALLOC_JET void prof_cnt_all(uint64_t *curobjs, uint64_t *curbytes, uint64_t *accumobjs, uint64_t *accumbytes) { tsd_t *tsd; prof_tdata_t *tdata; struct prof_tdata_merge_iter_arg_s prof_tdata_merge_iter_arg; struct prof_gctx_merge_iter_arg_s prof_gctx_merge_iter_arg; prof_gctx_tree_t gctxs; tsd = tsd_fetch(); tdata = prof_tdata_get(tsd, false); if (tdata == NULL) { if (curobjs != NULL) { *curobjs = 0; } if (curbytes != NULL) { *curbytes = 0; } if (accumobjs != NULL) { *accumobjs = 0; } if (accumbytes != NULL) { *accumbytes = 0; } return; } prof_dump_prep(tsd, tdata, &prof_tdata_merge_iter_arg, &prof_gctx_merge_iter_arg, &gctxs); prof_gctx_finish(tsd, &gctxs); if (curobjs != NULL) { *curobjs = prof_tdata_merge_iter_arg.cnt_all.curobjs; } if (curbytes != NULL) { *curbytes = prof_tdata_merge_iter_arg.cnt_all.curbytes; } if (accumobjs != NULL) { *accumobjs = prof_tdata_merge_iter_arg.cnt_all.accumobjs; } if (accumbytes != NULL) { *accumbytes = prof_tdata_merge_iter_arg.cnt_all.accumbytes; } } #endif #define DUMP_FILENAME_BUFSIZE (PATH_MAX + 1) #define VSEQ_INVALID UINT64_C(0xffffffffffffffff) static void prof_dump_filename(char *filename, char v, uint64_t vseq) { cassert(config_prof); if (vseq != VSEQ_INVALID) { /* "...v.heap" */ malloc_snprintf(filename, DUMP_FILENAME_BUFSIZE, "%s.%d.%"FMTu64".%c%"FMTu64".heap", opt_prof_prefix, prof_getpid(), prof_dump_seq, v, vseq); } else { /* "....heap" */ malloc_snprintf(filename, DUMP_FILENAME_BUFSIZE, "%s.%d.%"FMTu64".%c.heap", opt_prof_prefix, prof_getpid(), prof_dump_seq, v); } prof_dump_seq++; } static void prof_fdump(void) { tsd_t *tsd; char filename[DUMP_FILENAME_BUFSIZE]; cassert(config_prof); assert(opt_prof_final); assert(opt_prof_prefix[0] != '\0'); if (!prof_booted) { return; } tsd = tsd_fetch(); assert(tsd_reentrancy_level_get(tsd) == 0); malloc_mutex_lock(tsd_tsdn(tsd), &prof_dump_seq_mtx); prof_dump_filename(filename, 'f', VSEQ_INVALID); malloc_mutex_unlock(tsd_tsdn(tsd), &prof_dump_seq_mtx); prof_dump(tsd, false, filename, opt_prof_leak); } bool prof_accum_init(tsdn_t *tsdn, prof_accum_t *prof_accum) { cassert(config_prof); #ifndef JEMALLOC_ATOMIC_U64 if (malloc_mutex_init(&prof_accum->mtx, "prof_accum", WITNESS_RANK_PROF_ACCUM, malloc_mutex_rank_exclusive)) { return true; } prof_accum->accumbytes = 0; #else atomic_store_u64(&prof_accum->accumbytes, 0, ATOMIC_RELAXED); #endif return false; } void prof_idump(tsdn_t *tsdn) { tsd_t *tsd; prof_tdata_t *tdata; cassert(config_prof); if (!prof_booted || tsdn_null(tsdn) || !prof_active_get_unlocked()) { return; } tsd = tsdn_tsd(tsdn); if (tsd_reentrancy_level_get(tsd) > 0) { return; } tdata = prof_tdata_get(tsd, false); if (tdata == NULL) { return; } if (tdata->enq) { tdata->enq_idump = true; return; } if (opt_prof_prefix[0] != '\0') { char filename[PATH_MAX + 1]; malloc_mutex_lock(tsd_tsdn(tsd), &prof_dump_seq_mtx); prof_dump_filename(filename, 'i', prof_dump_iseq); prof_dump_iseq++; malloc_mutex_unlock(tsd_tsdn(tsd), &prof_dump_seq_mtx); prof_dump(tsd, false, filename, false); } } bool prof_mdump(tsd_t *tsd, const char *filename) { cassert(config_prof); assert(tsd_reentrancy_level_get(tsd) == 0); if (!opt_prof || !prof_booted) { return true; } char filename_buf[DUMP_FILENAME_BUFSIZE]; if (filename == NULL) { /* No filename specified, so automatically generate one. */ if (opt_prof_prefix[0] == '\0') { return true; } malloc_mutex_lock(tsd_tsdn(tsd), &prof_dump_seq_mtx); prof_dump_filename(filename_buf, 'm', prof_dump_mseq); prof_dump_mseq++; malloc_mutex_unlock(tsd_tsdn(tsd), &prof_dump_seq_mtx); filename = filename_buf; } return prof_dump(tsd, true, filename, false); } void prof_gdump(tsdn_t *tsdn) { tsd_t *tsd; prof_tdata_t *tdata; cassert(config_prof); if (!prof_booted || tsdn_null(tsdn) || !prof_active_get_unlocked()) { return; } tsd = tsdn_tsd(tsdn); if (tsd_reentrancy_level_get(tsd) > 0) { return; } tdata = prof_tdata_get(tsd, false); if (tdata == NULL) { return; } if (tdata->enq) { tdata->enq_gdump = true; return; } if (opt_prof_prefix[0] != '\0') { char filename[DUMP_FILENAME_BUFSIZE]; malloc_mutex_lock(tsdn, &prof_dump_seq_mtx); prof_dump_filename(filename, 'u', prof_dump_useq); prof_dump_useq++; malloc_mutex_unlock(tsdn, &prof_dump_seq_mtx); prof_dump(tsd, false, filename, false); } } static void prof_bt_hash(const void *key, size_t r_hash[2]) { prof_bt_t *bt = (prof_bt_t *)key; cassert(config_prof); hash(bt->vec, bt->len * sizeof(void *), 0x94122f33U, r_hash); } static bool prof_bt_keycomp(const void *k1, const void *k2) { const prof_bt_t *bt1 = (prof_bt_t *)k1; const prof_bt_t *bt2 = (prof_bt_t *)k2; cassert(config_prof); if (bt1->len != bt2->len) { return false; } return (memcmp(bt1->vec, bt2->vec, bt1->len * sizeof(void *)) == 0); } static void prof_bt_node_hash(const void *key, size_t r_hash[2]) { const prof_bt_node_t *bt_node = (prof_bt_node_t *)key; prof_bt_hash((void *)(&bt_node->bt), r_hash); } static bool prof_bt_node_keycomp(const void *k1, const void *k2) { const prof_bt_node_t *bt_node1 = (prof_bt_node_t *)k1; const prof_bt_node_t *bt_node2 = (prof_bt_node_t *)k2; return prof_bt_keycomp((void *)(&bt_node1->bt), (void *)(&bt_node2->bt)); } static void prof_thr_node_hash(const void *key, size_t r_hash[2]) { const prof_thr_node_t *thr_node = (prof_thr_node_t *)key; hash(&thr_node->thr_uid, sizeof(uint64_t), 0x94122f35U, r_hash); } static bool prof_thr_node_keycomp(const void *k1, const void *k2) { const prof_thr_node_t *thr_node1 = (prof_thr_node_t *)k1; const prof_thr_node_t *thr_node2 = (prof_thr_node_t *)k2; return thr_node1->thr_uid == thr_node2->thr_uid; } static uint64_t prof_thr_uid_alloc(tsdn_t *tsdn) { uint64_t thr_uid; malloc_mutex_lock(tsdn, &next_thr_uid_mtx); thr_uid = next_thr_uid; next_thr_uid++; malloc_mutex_unlock(tsdn, &next_thr_uid_mtx); return thr_uid; } static prof_tdata_t * prof_tdata_init_impl(tsd_t *tsd, uint64_t thr_uid, uint64_t thr_discrim, char *thread_name, bool active) { prof_tdata_t *tdata; cassert(config_prof); /* Initialize an empty cache for this thread. */ tdata = (prof_tdata_t *)iallocztm(tsd_tsdn(tsd), sizeof(prof_tdata_t), sz_size2index(sizeof(prof_tdata_t)), false, NULL, true, arena_get(TSDN_NULL, 0, true), true); if (tdata == NULL) { return NULL; } tdata->lock = prof_tdata_mutex_choose(thr_uid); tdata->thr_uid = thr_uid; tdata->thr_discrim = thr_discrim; tdata->thread_name = thread_name; tdata->attached = true; tdata->expired = false; tdata->tctx_uid_next = 0; if (ckh_new(tsd, &tdata->bt2tctx, PROF_CKH_MINITEMS, prof_bt_hash, prof_bt_keycomp)) { idalloctm(tsd_tsdn(tsd), tdata, NULL, NULL, true, true); return NULL; } tdata->prng_state = (uint64_t)(uintptr_t)tdata; prof_sample_threshold_update(tdata); tdata->enq = false; tdata->enq_idump = false; tdata->enq_gdump = false; tdata->dumping = false; tdata->active = active; malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx); tdata_tree_insert(&tdatas, tdata); malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx); return tdata; } prof_tdata_t * prof_tdata_init(tsd_t *tsd) { return prof_tdata_init_impl(tsd, prof_thr_uid_alloc(tsd_tsdn(tsd)), 0, NULL, prof_thread_active_init_get(tsd_tsdn(tsd))); } static bool prof_tdata_should_destroy_unlocked(prof_tdata_t *tdata, bool even_if_attached) { if (tdata->attached && !even_if_attached) { return false; } if (ckh_count(&tdata->bt2tctx) != 0) { return false; } return true; } static bool prof_tdata_should_destroy(tsdn_t *tsdn, prof_tdata_t *tdata, bool even_if_attached) { malloc_mutex_assert_owner(tsdn, tdata->lock); return prof_tdata_should_destroy_unlocked(tdata, even_if_attached); } static void prof_tdata_destroy_locked(tsd_t *tsd, prof_tdata_t *tdata, bool even_if_attached) { malloc_mutex_assert_owner(tsd_tsdn(tsd), &tdatas_mtx); tdata_tree_remove(&tdatas, tdata); assert(prof_tdata_should_destroy_unlocked(tdata, even_if_attached)); if (tdata->thread_name != NULL) { idalloctm(tsd_tsdn(tsd), tdata->thread_name, NULL, NULL, true, true); } ckh_delete(tsd, &tdata->bt2tctx); idalloctm(tsd_tsdn(tsd), tdata, NULL, NULL, true, true); } static void prof_tdata_destroy(tsd_t *tsd, prof_tdata_t *tdata, bool even_if_attached) { malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx); prof_tdata_destroy_locked(tsd, tdata, even_if_attached); malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx); } static void prof_tdata_detach(tsd_t *tsd, prof_tdata_t *tdata) { bool destroy_tdata; malloc_mutex_lock(tsd_tsdn(tsd), tdata->lock); if (tdata->attached) { destroy_tdata = prof_tdata_should_destroy(tsd_tsdn(tsd), tdata, true); /* * Only detach if !destroy_tdata, because detaching would allow * another thread to win the race to destroy tdata. */ if (!destroy_tdata) { tdata->attached = false; } tsd_prof_tdata_set(tsd, NULL); } else { destroy_tdata = false; } malloc_mutex_unlock(tsd_tsdn(tsd), tdata->lock); if (destroy_tdata) { prof_tdata_destroy(tsd, tdata, true); } } prof_tdata_t * prof_tdata_reinit(tsd_t *tsd, prof_tdata_t *tdata) { uint64_t thr_uid = tdata->thr_uid; uint64_t thr_discrim = tdata->thr_discrim + 1; char *thread_name = (tdata->thread_name != NULL) ? prof_thread_name_alloc(tsd_tsdn(tsd), tdata->thread_name) : NULL; bool active = tdata->active; prof_tdata_detach(tsd, tdata); return prof_tdata_init_impl(tsd, thr_uid, thr_discrim, thread_name, active); } static bool prof_tdata_expire(tsdn_t *tsdn, prof_tdata_t *tdata) { bool destroy_tdata; malloc_mutex_lock(tsdn, tdata->lock); if (!tdata->expired) { tdata->expired = true; destroy_tdata = tdata->attached ? false : prof_tdata_should_destroy(tsdn, tdata, false); } else { destroy_tdata = false; } malloc_mutex_unlock(tsdn, tdata->lock); return destroy_tdata; } static prof_tdata_t * prof_tdata_reset_iter(prof_tdata_tree_t *tdatas, prof_tdata_t *tdata, void *arg) { tsdn_t *tsdn = (tsdn_t *)arg; return (prof_tdata_expire(tsdn, tdata) ? tdata : NULL); } void prof_reset(tsd_t *tsd, size_t lg_sample) { prof_tdata_t *next; assert(lg_sample < (sizeof(uint64_t) << 3)); malloc_mutex_lock(tsd_tsdn(tsd), &prof_dump_mtx); malloc_mutex_lock(tsd_tsdn(tsd), &tdatas_mtx); lg_prof_sample = lg_sample; next = NULL; do { prof_tdata_t *to_destroy = tdata_tree_iter(&tdatas, next, prof_tdata_reset_iter, (void *)tsd); if (to_destroy != NULL) { next = tdata_tree_next(&tdatas, to_destroy); prof_tdata_destroy_locked(tsd, to_destroy, false); } else { next = NULL; } } while (next != NULL); malloc_mutex_unlock(tsd_tsdn(tsd), &tdatas_mtx); malloc_mutex_unlock(tsd_tsdn(tsd), &prof_dump_mtx); } void prof_tdata_cleanup(tsd_t *tsd) { prof_tdata_t *tdata; if (!config_prof) { return; } tdata = tsd_prof_tdata_get(tsd); if (tdata != NULL) { prof_tdata_detach(tsd, tdata); } } bool prof_active_get(tsdn_t *tsdn) { bool prof_active_current; malloc_mutex_lock(tsdn, &prof_active_mtx); prof_active_current = prof_active; malloc_mutex_unlock(tsdn, &prof_active_mtx); return prof_active_current; } bool prof_active_set(tsdn_t *tsdn, bool active) { bool prof_active_old; malloc_mutex_lock(tsdn, &prof_active_mtx); prof_active_old = prof_active; prof_active = active; malloc_mutex_unlock(tsdn, &prof_active_mtx); return prof_active_old; } #ifdef JEMALLOC_JET size_t prof_log_bt_count(void) { size_t cnt = 0; prof_bt_node_t *node = log_bt_first; while (node != NULL) { cnt++; node = node->next; } return cnt; } size_t prof_log_alloc_count(void) { size_t cnt = 0; prof_alloc_node_t *node = log_alloc_first; while (node != NULL) { cnt++; node = node->next; } return cnt; } size_t prof_log_thr_count(void) { size_t cnt = 0; prof_thr_node_t *node = log_thr_first; while (node != NULL) { cnt++; node = node->next; } return cnt; } bool prof_log_is_logging(void) { return prof_logging_state == prof_logging_state_started; } bool prof_log_rep_check(void) { if (prof_logging_state == prof_logging_state_stopped && log_tables_initialized) { return true; } if (log_bt_last != NULL && log_bt_last->next != NULL) { return true; } if (log_thr_last != NULL && log_thr_last->next != NULL) { return true; } if (log_alloc_last != NULL && log_alloc_last->next != NULL) { return true; } size_t bt_count = prof_log_bt_count(); size_t thr_count = prof_log_thr_count(); size_t alloc_count = prof_log_alloc_count(); if (prof_logging_state == prof_logging_state_stopped) { if (bt_count != 0 || thr_count != 0 || alloc_count || 0) { return true; } } prof_alloc_node_t *node = log_alloc_first; while (node != NULL) { if (node->alloc_bt_ind >= bt_count) { return true; } if (node->free_bt_ind >= bt_count) { return true; } if (node->alloc_thr_ind >= thr_count) { return true; } if (node->free_thr_ind >= thr_count) { return true; } if (node->alloc_time_ns > node->free_time_ns) { return true; } node = node->next; } return false; } void prof_log_dummy_set(bool new_value) { prof_log_dummy = new_value; } #endif bool prof_log_start(tsdn_t *tsdn, const char *filename) { if (!opt_prof || !prof_booted) { return true; } bool ret = false; size_t buf_size = PATH_MAX + 1; malloc_mutex_lock(tsdn, &log_mtx); if (prof_logging_state != prof_logging_state_stopped) { ret = true; } else if (filename == NULL) { /* Make default name. */ malloc_snprintf(log_filename, buf_size, "%s.%d.%"FMTu64".json", opt_prof_prefix, prof_getpid(), log_seq); log_seq++; prof_logging_state = prof_logging_state_started; } else if (strlen(filename) >= buf_size) { ret = true; } else { strcpy(log_filename, filename); prof_logging_state = prof_logging_state_started; } if (!ret) { nstime_update(&log_start_timestamp); } malloc_mutex_unlock(tsdn, &log_mtx); return ret; } /* Used as an atexit function to stop logging on exit. */ static void prof_log_stop_final(void) { tsd_t *tsd = tsd_fetch(); prof_log_stop(tsd_tsdn(tsd)); } struct prof_emitter_cb_arg_s { int fd; ssize_t ret; }; static void prof_emitter_write_cb(void *opaque, const char *to_write) { struct prof_emitter_cb_arg_s *arg = (struct prof_emitter_cb_arg_s *)opaque; size_t bytes = strlen(to_write); #ifdef JEMALLOC_JET if (prof_log_dummy) { return; } #endif arg->ret = write(arg->fd, (void *)to_write, bytes); } /* * prof_log_emit_{...} goes through the appropriate linked list, emitting each * node to the json and deallocating it. */ static void prof_log_emit_threads(tsd_t *tsd, emitter_t *emitter) { emitter_json_array_kv_begin(emitter, "threads"); prof_thr_node_t *thr_node = log_thr_first; prof_thr_node_t *thr_old_node; while (thr_node != NULL) { emitter_json_object_begin(emitter); emitter_json_kv(emitter, "thr_uid", emitter_type_uint64, &thr_node->thr_uid); char *thr_name = thr_node->name; emitter_json_kv(emitter, "thr_name", emitter_type_string, &thr_name); emitter_json_object_end(emitter); thr_old_node = thr_node; thr_node = thr_node->next; idalloc(tsd, thr_old_node); } emitter_json_array_end(emitter); } static void prof_log_emit_traces(tsd_t *tsd, emitter_t *emitter) { emitter_json_array_kv_begin(emitter, "stack_traces"); prof_bt_node_t *bt_node = log_bt_first; prof_bt_node_t *bt_old_node; /* * Calculate how many hex digits we need: twice number of bytes, two for * "0x", and then one more for terminating '\0'. */ char buf[2 * sizeof(intptr_t) + 3]; size_t buf_sz = sizeof(buf); while (bt_node != NULL) { emitter_json_array_begin(emitter); size_t i; for (i = 0; i < bt_node->bt.len; i++) { malloc_snprintf(buf, buf_sz, "%p", bt_node->bt.vec[i]); char *trace_str = buf; emitter_json_value(emitter, emitter_type_string, &trace_str); } emitter_json_array_end(emitter); bt_old_node = bt_node; bt_node = bt_node->next; idalloc(tsd, bt_old_node); } emitter_json_array_end(emitter); } static void prof_log_emit_allocs(tsd_t *tsd, emitter_t *emitter) { emitter_json_array_kv_begin(emitter, "allocations"); prof_alloc_node_t *alloc_node = log_alloc_first; prof_alloc_node_t *alloc_old_node; while (alloc_node != NULL) { emitter_json_object_begin(emitter); emitter_json_kv(emitter, "alloc_thread", emitter_type_size, &alloc_node->alloc_thr_ind); emitter_json_kv(emitter, "free_thread", emitter_type_size, &alloc_node->free_thr_ind); emitter_json_kv(emitter, "alloc_trace", emitter_type_size, &alloc_node->alloc_bt_ind); emitter_json_kv(emitter, "free_trace", emitter_type_size, &alloc_node->free_bt_ind); emitter_json_kv(emitter, "alloc_timestamp", emitter_type_uint64, &alloc_node->alloc_time_ns); emitter_json_kv(emitter, "free_timestamp", emitter_type_uint64, &alloc_node->free_time_ns); emitter_json_kv(emitter, "usize", emitter_type_uint64, &alloc_node->usize); emitter_json_object_end(emitter); alloc_old_node = alloc_node; alloc_node = alloc_node->next; idalloc(tsd, alloc_old_node); } emitter_json_array_end(emitter); } static void prof_log_emit_metadata(emitter_t *emitter) { emitter_json_object_kv_begin(emitter, "info"); nstime_t now = NSTIME_ZERO_INITIALIZER; nstime_update(&now); uint64_t ns = nstime_ns(&now) - nstime_ns(&log_start_timestamp); emitter_json_kv(emitter, "duration", emitter_type_uint64, &ns); char *vers = JEMALLOC_VERSION; emitter_json_kv(emitter, "version", emitter_type_string, &vers); emitter_json_kv(emitter, "lg_sample_rate", emitter_type_int, &lg_prof_sample); int pid = prof_getpid(); emitter_json_kv(emitter, "pid", emitter_type_int, &pid); emitter_json_object_end(emitter); } bool prof_log_stop(tsdn_t *tsdn) { if (!opt_prof || !prof_booted) { return true; } tsd_t *tsd = tsdn_tsd(tsdn); malloc_mutex_lock(tsdn, &log_mtx); if (prof_logging_state != prof_logging_state_started) { malloc_mutex_unlock(tsdn, &log_mtx); return true; } /* * Set the state to dumping. We'll set it to stopped when we're done. * Since other threads won't be able to start/stop/log when the state is * dumping, we don't have to hold the lock during the whole method. */ prof_logging_state = prof_logging_state_dumping; malloc_mutex_unlock(tsdn, &log_mtx); emitter_t emitter; /* Create a file. */ int fd; #ifdef JEMALLOC_JET if (prof_log_dummy) { fd = 0; } else { fd = creat(log_filename, 0644); } #else fd = creat(log_filename, 0644); #endif if (fd == -1) { malloc_printf(": creat() for log file \"%s\" " " failed with %d\n", log_filename, errno); if (opt_abort) { abort(); } return true; } /* Emit to json. */ struct prof_emitter_cb_arg_s arg; arg.fd = fd; emitter_init(&emitter, emitter_output_json, &prof_emitter_write_cb, (void *)(&arg)); emitter_json_object_begin(&emitter); prof_log_emit_metadata(&emitter); prof_log_emit_threads(tsd, &emitter); prof_log_emit_traces(tsd, &emitter); prof_log_emit_allocs(tsd, &emitter); emitter_json_object_end(&emitter); /* Reset global state. */ if (log_tables_initialized) { ckh_delete(tsd, &log_bt_node_set); ckh_delete(tsd, &log_thr_node_set); } log_tables_initialized = false; log_bt_index = 0; log_thr_index = 0; log_bt_first = NULL; log_bt_last = NULL; log_thr_first = NULL; log_thr_last = NULL; log_alloc_first = NULL; log_alloc_last = NULL; malloc_mutex_lock(tsdn, &log_mtx); prof_logging_state = prof_logging_state_stopped; malloc_mutex_unlock(tsdn, &log_mtx); #ifdef JEMALLOC_JET if (prof_log_dummy) { return false; } #endif return close(fd); } const char * prof_thread_name_get(tsd_t *tsd) { prof_tdata_t *tdata; tdata = prof_tdata_get(tsd, true); if (tdata == NULL) { return ""; } return (tdata->thread_name != NULL ? tdata->thread_name : ""); } static char * prof_thread_name_alloc(tsdn_t *tsdn, const char *thread_name) { char *ret; size_t size; if (thread_name == NULL) { return NULL; } size = strlen(thread_name) + 1; if (size == 1) { return ""; } ret = iallocztm(tsdn, size, sz_size2index(size), false, NULL, true, arena_get(TSDN_NULL, 0, true), true); if (ret == NULL) { return NULL; } memcpy(ret, thread_name, size); return ret; } int prof_thread_name_set(tsd_t *tsd, const char *thread_name) { prof_tdata_t *tdata; unsigned i; char *s; tdata = prof_tdata_get(tsd, true); if (tdata == NULL) { return EAGAIN; } /* Validate input. */ if (thread_name == NULL) { return EFAULT; } for (i = 0; thread_name[i] != '\0'; i++) { char c = thread_name[i]; if (!isgraph(c) && !isblank(c)) { return EFAULT; } } s = prof_thread_name_alloc(tsd_tsdn(tsd), thread_name); if (s == NULL) { return EAGAIN; } if (tdata->thread_name != NULL) { idalloctm(tsd_tsdn(tsd), tdata->thread_name, NULL, NULL, true, true); tdata->thread_name = NULL; } if (strlen(s) > 0) { tdata->thread_name = s; } return 0; } bool prof_thread_active_get(tsd_t *tsd) { prof_tdata_t *tdata; tdata = prof_tdata_get(tsd, true); if (tdata == NULL) { return false; } return tdata->active; } bool prof_thread_active_set(tsd_t *tsd, bool active) { prof_tdata_t *tdata; tdata = prof_tdata_get(tsd, true); if (tdata == NULL) { return true; } tdata->active = active; return false; } bool prof_thread_active_init_get(tsdn_t *tsdn) { bool active_init; malloc_mutex_lock(tsdn, &prof_thread_active_init_mtx); active_init = prof_thread_active_init; malloc_mutex_unlock(tsdn, &prof_thread_active_init_mtx); return active_init; } bool prof_thread_active_init_set(tsdn_t *tsdn, bool active_init) { bool active_init_old; malloc_mutex_lock(tsdn, &prof_thread_active_init_mtx); active_init_old = prof_thread_active_init; prof_thread_active_init = active_init; malloc_mutex_unlock(tsdn, &prof_thread_active_init_mtx); return active_init_old; } bool prof_gdump_get(tsdn_t *tsdn) { bool prof_gdump_current; malloc_mutex_lock(tsdn, &prof_gdump_mtx); prof_gdump_current = prof_gdump_val; malloc_mutex_unlock(tsdn, &prof_gdump_mtx); return prof_gdump_current; } bool prof_gdump_set(tsdn_t *tsdn, bool gdump) { bool prof_gdump_old; malloc_mutex_lock(tsdn, &prof_gdump_mtx); prof_gdump_old = prof_gdump_val; prof_gdump_val = gdump; malloc_mutex_unlock(tsdn, &prof_gdump_mtx); return prof_gdump_old; } void prof_boot0(void) { cassert(config_prof); memcpy(opt_prof_prefix, PROF_PREFIX_DEFAULT, sizeof(PROF_PREFIX_DEFAULT)); } void prof_boot1(void) { cassert(config_prof); /* * opt_prof must be in its final state before any arenas are * initialized, so this function must be executed early. */ if (opt_prof_leak && !opt_prof) { /* * Enable opt_prof, but in such a way that profiles are never * automatically dumped. */ opt_prof = true; opt_prof_gdump = false; } else if (opt_prof) { if (opt_lg_prof_interval >= 0) { prof_interval = (((uint64_t)1U) << opt_lg_prof_interval); } } } bool prof_boot2(tsd_t *tsd) { cassert(config_prof); if (opt_prof) { unsigned i; lg_prof_sample = opt_lg_prof_sample; prof_active = opt_prof_active; if (malloc_mutex_init(&prof_active_mtx, "prof_active", WITNESS_RANK_PROF_ACTIVE, malloc_mutex_rank_exclusive)) { return true; } prof_gdump_val = opt_prof_gdump; if (malloc_mutex_init(&prof_gdump_mtx, "prof_gdump", WITNESS_RANK_PROF_GDUMP, malloc_mutex_rank_exclusive)) { return true; } prof_thread_active_init = opt_prof_thread_active_init; if (malloc_mutex_init(&prof_thread_active_init_mtx, "prof_thread_active_init", WITNESS_RANK_PROF_THREAD_ACTIVE_INIT, malloc_mutex_rank_exclusive)) { return true; } if (ckh_new(tsd, &bt2gctx, PROF_CKH_MINITEMS, prof_bt_hash, prof_bt_keycomp)) { return true; } if (malloc_mutex_init(&bt2gctx_mtx, "prof_bt2gctx", WITNESS_RANK_PROF_BT2GCTX, malloc_mutex_rank_exclusive)) { return true; } tdata_tree_new(&tdatas); if (malloc_mutex_init(&tdatas_mtx, "prof_tdatas", WITNESS_RANK_PROF_TDATAS, malloc_mutex_rank_exclusive)) { return true; } next_thr_uid = 0; if (malloc_mutex_init(&next_thr_uid_mtx, "prof_next_thr_uid", WITNESS_RANK_PROF_NEXT_THR_UID, malloc_mutex_rank_exclusive)) { return true; } if (malloc_mutex_init(&prof_dump_seq_mtx, "prof_dump_seq", WITNESS_RANK_PROF_DUMP_SEQ, malloc_mutex_rank_exclusive)) { return true; } if (malloc_mutex_init(&prof_dump_mtx, "prof_dump", WITNESS_RANK_PROF_DUMP, malloc_mutex_rank_exclusive)) { return true; } if (opt_prof_final && opt_prof_prefix[0] != '\0' && atexit(prof_fdump) != 0) { malloc_write(": Error in atexit()\n"); if (opt_abort) { abort(); } } if (opt_prof_log) { prof_log_start(tsd_tsdn(tsd), NULL); } if (atexit(prof_log_stop_final) != 0) { malloc_write(": Error in atexit() " "for logging\n"); if (opt_abort) { abort(); } } if (malloc_mutex_init(&log_mtx, "prof_log", WITNESS_RANK_PROF_LOG, malloc_mutex_rank_exclusive)) { return true; } if (ckh_new(tsd, &log_bt_node_set, PROF_CKH_MINITEMS, prof_bt_node_hash, prof_bt_node_keycomp)) { return true; } if (ckh_new(tsd, &log_thr_node_set, PROF_CKH_MINITEMS, prof_thr_node_hash, prof_thr_node_keycomp)) { return true; } log_tables_initialized = true; gctx_locks = (malloc_mutex_t *)base_alloc(tsd_tsdn(tsd), b0get(), PROF_NCTX_LOCKS * sizeof(malloc_mutex_t), CACHELINE); if (gctx_locks == NULL) { return true; } for (i = 0; i < PROF_NCTX_LOCKS; i++) { if (malloc_mutex_init(&gctx_locks[i], "prof_gctx", WITNESS_RANK_PROF_GCTX, malloc_mutex_rank_exclusive)) { return true; } } tdata_locks = (malloc_mutex_t *)base_alloc(tsd_tsdn(tsd), b0get(), PROF_NTDATA_LOCKS * sizeof(malloc_mutex_t), CACHELINE); if (tdata_locks == NULL) { return true; } for (i = 0; i < PROF_NTDATA_LOCKS; i++) { if (malloc_mutex_init(&tdata_locks[i], "prof_tdata", WITNESS_RANK_PROF_TDATA, malloc_mutex_rank_exclusive)) { return true; } } } #ifdef JEMALLOC_PROF_LIBGCC /* * Cause the backtracing machinery to allocate its internal state * before enabling profiling. */ _Unwind_Backtrace(prof_unwind_init_callback, NULL); #endif prof_booted = true; return false; } void prof_prefork0(tsdn_t *tsdn) { if (config_prof && opt_prof) { unsigned i; malloc_mutex_prefork(tsdn, &prof_dump_mtx); malloc_mutex_prefork(tsdn, &bt2gctx_mtx); malloc_mutex_prefork(tsdn, &tdatas_mtx); for (i = 0; i < PROF_NTDATA_LOCKS; i++) { malloc_mutex_prefork(tsdn, &tdata_locks[i]); } for (i = 0; i < PROF_NCTX_LOCKS; i++) { malloc_mutex_prefork(tsdn, &gctx_locks[i]); } } } void prof_prefork1(tsdn_t *tsdn) { if (config_prof && opt_prof) { malloc_mutex_prefork(tsdn, &prof_active_mtx); malloc_mutex_prefork(tsdn, &prof_dump_seq_mtx); malloc_mutex_prefork(tsdn, &prof_gdump_mtx); malloc_mutex_prefork(tsdn, &next_thr_uid_mtx); malloc_mutex_prefork(tsdn, &prof_thread_active_init_mtx); } } void prof_postfork_parent(tsdn_t *tsdn) { if (config_prof && opt_prof) { unsigned i; malloc_mutex_postfork_parent(tsdn, &prof_thread_active_init_mtx); malloc_mutex_postfork_parent(tsdn, &next_thr_uid_mtx); malloc_mutex_postfork_parent(tsdn, &prof_gdump_mtx); malloc_mutex_postfork_parent(tsdn, &prof_dump_seq_mtx); malloc_mutex_postfork_parent(tsdn, &prof_active_mtx); for (i = 0; i < PROF_NCTX_LOCKS; i++) { malloc_mutex_postfork_parent(tsdn, &gctx_locks[i]); } for (i = 0; i < PROF_NTDATA_LOCKS; i++) { malloc_mutex_postfork_parent(tsdn, &tdata_locks[i]); } malloc_mutex_postfork_parent(tsdn, &tdatas_mtx); malloc_mutex_postfork_parent(tsdn, &bt2gctx_mtx); malloc_mutex_postfork_parent(tsdn, &prof_dump_mtx); } } void prof_postfork_child(tsdn_t *tsdn) { if (config_prof && opt_prof) { unsigned i; malloc_mutex_postfork_child(tsdn, &prof_thread_active_init_mtx); malloc_mutex_postfork_child(tsdn, &next_thr_uid_mtx); malloc_mutex_postfork_child(tsdn, &prof_gdump_mtx); malloc_mutex_postfork_child(tsdn, &prof_dump_seq_mtx); malloc_mutex_postfork_child(tsdn, &prof_active_mtx); for (i = 0; i < PROF_NCTX_LOCKS; i++) { malloc_mutex_postfork_child(tsdn, &gctx_locks[i]); } for (i = 0; i < PROF_NTDATA_LOCKS; i++) { malloc_mutex_postfork_child(tsdn, &tdata_locks[i]); } malloc_mutex_postfork_child(tsdn, &tdatas_mtx); malloc_mutex_postfork_child(tsdn, &bt2gctx_mtx); malloc_mutex_postfork_child(tsdn, &prof_dump_mtx); } } /******************************************************************************/