#define JEMALLOC_C_ #include "jemalloc/internal/jemalloc_internal.h" /******************************************************************************/ /* Data. */ malloc_mutex_t arenas_lock; arena_t **arenas; unsigned narenas; pthread_key_t arenas_tsd; #ifndef NO_TLS __thread arena_t *arenas_tls JEMALLOC_ATTR(tls_model("initial-exec")); #endif #ifdef JEMALLOC_STATS # ifndef NO_TLS __thread thread_allocated_t thread_allocated_tls; # else pthread_key_t thread_allocated_tsd; # endif #endif /* Set to true once the allocator has been initialized. */ static bool malloc_initialized = false; /* Used to let the initializing thread recursively allocate. */ static pthread_t malloc_initializer = (unsigned long)0; /* Used to avoid initialization races. */ static malloc_mutex_t init_lock = #ifdef JEMALLOC_OSSPIN 0 #else MALLOC_MUTEX_INITIALIZER #endif ; #ifdef DYNAMIC_PAGE_SHIFT size_t pagesize; size_t pagesize_mask; size_t lg_pagesize; #endif unsigned ncpus; /* Runtime configuration options. */ const char *JEMALLOC_P(malloc_conf) JEMALLOC_ATTR(visibility("default")); #ifdef JEMALLOC_DEBUG bool opt_abort = true; # ifdef JEMALLOC_FILL bool opt_junk = true; # endif #else bool opt_abort = false; # ifdef JEMALLOC_FILL bool opt_junk = false; # endif #endif #ifdef JEMALLOC_SYSV bool opt_sysv = false; #endif #ifdef JEMALLOC_XMALLOC bool opt_xmalloc = false; #endif #ifdef JEMALLOC_FILL bool opt_zero = false; #endif size_t opt_narenas = 0; /******************************************************************************/ /* Function prototypes for non-inline static functions. */ static void wrtmessage(void *cbopaque, const char *s); static void stats_print_atexit(void); static unsigned malloc_ncpus(void); static void arenas_cleanup(void *arg); #if (defined(JEMALLOC_STATS) && defined(NO_TLS)) static void thread_allocated_cleanup(void *arg); #endif static bool malloc_conf_next(char const **opts_p, char const **k_p, size_t *klen_p, char const **v_p, size_t *vlen_p); static void malloc_conf_error(const char *msg, const char *k, size_t klen, const char *v, size_t vlen); static void malloc_conf_init(void); static bool malloc_init_hard(void); /******************************************************************************/ /* malloc_message() setup. */ #ifdef JEMALLOC_HAVE_ATTR JEMALLOC_ATTR(visibility("hidden")) #else static #endif void wrtmessage(void *cbopaque, const char *s) { #ifdef JEMALLOC_CC_SILENCE int result = #endif write(STDERR_FILENO, s, strlen(s)); #ifdef JEMALLOC_CC_SILENCE if (result < 0) result = errno; #endif } void (*JEMALLOC_P(malloc_message))(void *, const char *s) JEMALLOC_ATTR(visibility("default")) = wrtmessage; /******************************************************************************/ /* * Begin miscellaneous support functions. */ /* Create a new arena and insert it into the arenas array at index ind. */ arena_t * arenas_extend(unsigned ind) { arena_t *ret; /* Allocate enough space for trailing bins. */ ret = (arena_t *)base_alloc(offsetof(arena_t, bins) + (sizeof(arena_bin_t) * nbins)); if (ret != NULL && arena_new(ret, ind) == false) { arenas[ind] = ret; return (ret); } /* Only reached if there is an OOM error. */ /* * OOM here is quite inconvenient to propagate, since dealing with it * would require a check for failure in the fast path. Instead, punt * by using arenas[0]. In practice, this is an extremely unlikely * failure. */ malloc_write(": Error initializing arena\n"); if (opt_abort) abort(); return (arenas[0]); } /* * Choose an arena based on a per-thread value (slow-path code only, called * only by choose_arena()). */ arena_t * choose_arena_hard(void) { arena_t *ret; if (narenas > 1) { unsigned i, choose, first_null; choose = 0; first_null = narenas; malloc_mutex_lock(&arenas_lock); assert(arenas[0] != NULL); for (i = 1; i < narenas; i++) { if (arenas[i] != NULL) { /* * Choose the first arena that has the lowest * number of threads assigned to it. */ if (arenas[i]->nthreads < arenas[choose]->nthreads) choose = i; } else if (first_null == narenas) { /* * Record the index of the first uninitialized * arena, in case all extant arenas are in use. * * NB: It is possible for there to be * discontinuities in terms of initialized * versus uninitialized arenas, due to the * "thread.arena" mallctl. */ first_null = i; } } if (arenas[choose] == 0 || first_null == narenas) { /* * Use an unloaded arena, or the least loaded arena if * all arenas are already initialized. */ ret = arenas[choose]; } else { /* Initialize a new arena. */ ret = arenas_extend(first_null); } ret->nthreads++; malloc_mutex_unlock(&arenas_lock); } else { ret = arenas[0]; malloc_mutex_lock(&arenas_lock); ret->nthreads++; malloc_mutex_unlock(&arenas_lock); } ARENA_SET(ret); return (ret); } /* * glibc provides a non-standard strerror_r() when _GNU_SOURCE is defined, so * provide a wrapper. */ int buferror(int errnum, char *buf, size_t buflen) { #ifdef _GNU_SOURCE char *b = strerror_r(errno, buf, buflen); if (b != buf) { strncpy(buf, b, buflen); buf[buflen-1] = '\0'; } return (0); #else return (strerror_r(errno, buf, buflen)); #endif } static void stats_print_atexit(void) { #if (defined(JEMALLOC_TCACHE) && defined(JEMALLOC_STATS)) unsigned i; /* * Merge stats from extant threads. This is racy, since individual * threads do not lock when recording tcache stats events. As a * consequence, the final stats may be slightly out of date by the time * they are reported, if other threads continue to allocate. */ for (i = 0; i < narenas; i++) { arena_t *arena = arenas[i]; if (arena != NULL) { tcache_t *tcache; /* * tcache_stats_merge() locks bins, so if any code is * introduced that acquires both arena and bin locks in * the opposite order, deadlocks may result. */ malloc_mutex_lock(&arena->lock); ql_foreach(tcache, &arena->tcache_ql, link) { tcache_stats_merge(tcache, arena); } malloc_mutex_unlock(&arena->lock); } } #endif JEMALLOC_P(malloc_stats_print)(NULL, NULL, NULL); } #if (defined(JEMALLOC_STATS) && defined(NO_TLS)) thread_allocated_t * thread_allocated_get_hard(void) { thread_allocated_t *thread_allocated = (thread_allocated_t *) imalloc(sizeof(thread_allocated_t)); if (thread_allocated == NULL) { static thread_allocated_t static_thread_allocated = {0, 0}; malloc_write(": Error allocating TSD;" " mallctl(\"thread.{de,}allocated[p]\", ...)" " will be inaccurate\n"); if (opt_abort) abort(); return (&static_thread_allocated); } pthread_setspecific(thread_allocated_tsd, thread_allocated); thread_allocated->allocated = 0; thread_allocated->deallocated = 0; return (thread_allocated); } #endif /* * End miscellaneous support functions. */ /******************************************************************************/ /* * Begin initialization functions. */ static unsigned malloc_ncpus(void) { unsigned ret; long result; result = sysconf(_SC_NPROCESSORS_ONLN); if (result == -1) { /* Error. */ ret = 1; } ret = (unsigned)result; return (ret); } static void arenas_cleanup(void *arg) { arena_t *arena = (arena_t *)arg; malloc_mutex_lock(&arenas_lock); arena->nthreads--; malloc_mutex_unlock(&arenas_lock); } #if (defined(JEMALLOC_STATS) && defined(NO_TLS)) static void thread_allocated_cleanup(void *arg) { uint64_t *allocated = (uint64_t *)arg; if (allocated != NULL) idalloc(allocated); } #endif /* * FreeBSD's pthreads implementation calls malloc(3), so the malloc * implementation has to take pains to avoid infinite recursion during * initialization. */ static inline bool malloc_init(void) { if (malloc_initialized == false) return (malloc_init_hard()); return (false); } static bool malloc_conf_next(char const **opts_p, char const **k_p, size_t *klen_p, char const **v_p, size_t *vlen_p) { bool accept; const char *opts = *opts_p; *k_p = opts; for (accept = false; accept == false;) { switch (*opts) { case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G': case 'H': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': case 'Q': case 'R': case 'S': case 'T': case 'U': case 'V': case 'W': case 'X': case 'Y': case 'Z': case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g': case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n': case 'o': case 'p': case 'q': case 'r': case 's': case 't': case 'u': case 'v': case 'w': case 'x': case 'y': case 'z': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case '_': opts++; break; case ':': opts++; *klen_p = (uintptr_t)opts - 1 - (uintptr_t)*k_p; *v_p = opts; accept = true; break; case '\0': if (opts != *opts_p) { malloc_write(": Conf string " "ends with key\n"); } return (true); default: malloc_write(": Malformed conf " "string\n"); return (true); } } for (accept = false; accept == false;) { switch (*opts) { case ',': opts++; /* * Look ahead one character here, because the * next time this function is called, it will * assume that end of input has been cleanly * reached if no input remains, but we have * optimistically already consumed the comma if * one exists. */ if (*opts == '\0') { malloc_write(": Conf string " "ends with comma\n"); } *vlen_p = (uintptr_t)opts - 1 - (uintptr_t)*v_p; accept = true; break; case '\0': *vlen_p = (uintptr_t)opts - (uintptr_t)*v_p; accept = true; break; default: opts++; break; } } *opts_p = opts; return (false); } static void malloc_conf_error(const char *msg, const char *k, size_t klen, const char *v, size_t vlen) { char buf[PATH_MAX + 1]; malloc_write(": "); malloc_write(msg); malloc_write(": "); memcpy(buf, k, klen); memcpy(&buf[klen], ":", 1); memcpy(&buf[klen+1], v, vlen); buf[klen+1+vlen] = '\0'; malloc_write(buf); malloc_write("\n"); } static void malloc_conf_init(void) { unsigned i; char buf[PATH_MAX + 1]; const char *opts, *k, *v; size_t klen, vlen; for (i = 0; i < 3; i++) { /* Get runtime configuration. */ switch (i) { case 0: if (JEMALLOC_P(malloc_conf) != NULL) { /* * Use options that were compiled into the * program. */ opts = JEMALLOC_P(malloc_conf); } else { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; case 1: { int linklen; const char *linkname = #ifdef JEMALLOC_PREFIX "/etc/"JEMALLOC_PREFIX"malloc.conf" #else "/etc/malloc.conf" #endif ; if ((linklen = readlink(linkname, buf, sizeof(buf) - 1)) != -1) { /* * Use the contents of the "/etc/malloc.conf" * symbolic link's name. */ buf[linklen] = '\0'; opts = buf; } else { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; } case 2: { const char *envname = #ifdef JEMALLOC_PREFIX JEMALLOC_CPREFIX"MALLOC_CONF" #else "MALLOC_CONF" #endif ; if ((opts = getenv(envname)) != NULL) { /* * Do nothing; opts is already initialized to * the value of the MALLOC_CONF environment * variable. */ } else { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; } default: /* NOTREACHED */ assert(false); buf[0] = '\0'; opts = buf; } while (*opts != '\0' && malloc_conf_next(&opts, &k, &klen, &v, &vlen) == false) { #define CONF_HANDLE_BOOL(n) \ if (sizeof(#n)-1 == klen && strncmp(#n, k, \ klen) == 0) { \ if (strncmp("true", v, vlen) == 0 && \ vlen == sizeof("true")-1) \ opt_##n = true; \ else if (strncmp("false", v, vlen) == \ 0 && vlen == sizeof("false")-1) \ opt_##n = false; \ else { \ malloc_conf_error( \ "Invalid conf value", \ k, klen, v, vlen); \ } \ continue; \ } #define CONF_HANDLE_SIZE_T(n, min, max) \ if (sizeof(#n)-1 == klen && strncmp(#n, k, \ klen) == 0) { \ unsigned long ul; \ char *end; \ \ errno = 0; \ ul = strtoul(v, &end, 0); \ if (errno != 0 || (uintptr_t)end - \ (uintptr_t)v != vlen) { \ malloc_conf_error( \ "Invalid conf value", \ k, klen, v, vlen); \ } else if (ul < min || ul > max) { \ malloc_conf_error( \ "Out-of-range conf value", \ k, klen, v, vlen); \ } else \ opt_##n = ul; \ continue; \ } #define CONF_HANDLE_SSIZE_T(n, min, max) \ if (sizeof(#n)-1 == klen && strncmp(#n, k, \ klen) == 0) { \ long l; \ char *end; \ \ errno = 0; \ l = strtol(v, &end, 0); \ if (errno != 0 || (uintptr_t)end - \ (uintptr_t)v != vlen) { \ malloc_conf_error( \ "Invalid conf value", \ k, klen, v, vlen); \ } else if (l < (ssize_t)min || l > \ (ssize_t)max) { \ malloc_conf_error( \ "Out-of-range conf value", \ k, klen, v, vlen); \ } else \ opt_##n = l; \ continue; \ } #define CONF_HANDLE_CHAR_P(n, d) \ if (sizeof(#n)-1 == klen && strncmp(#n, k, \ klen) == 0) { \ size_t cpylen = (vlen <= \ sizeof(opt_##n)-1) ? vlen : \ sizeof(opt_##n)-1; \ strncpy(opt_##n, v, cpylen); \ opt_##n[cpylen] = '\0'; \ continue; \ } CONF_HANDLE_BOOL(abort) CONF_HANDLE_SIZE_T(lg_qspace_max, LG_QUANTUM, PAGE_SHIFT-1) CONF_HANDLE_SIZE_T(lg_cspace_max, LG_QUANTUM, PAGE_SHIFT-1) /* * Chunks always require at least one * header page, * plus one data page. */ CONF_HANDLE_SIZE_T(lg_chunk, PAGE_SHIFT+1, (sizeof(size_t) << 3) - 1) CONF_HANDLE_SIZE_T(narenas, 1, SIZE_T_MAX) CONF_HANDLE_SSIZE_T(lg_dirty_mult, -1, (sizeof(size_t) << 3) - 1) CONF_HANDLE_BOOL(stats_print) #ifdef JEMALLOC_FILL CONF_HANDLE_BOOL(junk) CONF_HANDLE_BOOL(zero) #endif #ifdef JEMALLOC_SYSV CONF_HANDLE_BOOL(sysv) #endif #ifdef JEMALLOC_XMALLOC CONF_HANDLE_BOOL(xmalloc) #endif #ifdef JEMALLOC_TCACHE CONF_HANDLE_BOOL(tcache) CONF_HANDLE_SSIZE_T(lg_tcache_gc_sweep, -1, (sizeof(size_t) << 3) - 1) CONF_HANDLE_SSIZE_T(lg_tcache_max, -1, (sizeof(size_t) << 3) - 1) #endif #ifdef JEMALLOC_PROF CONF_HANDLE_BOOL(prof) CONF_HANDLE_CHAR_P(prof_prefix, "jeprof") CONF_HANDLE_SIZE_T(lg_prof_bt_max, 0, LG_PROF_BT_MAX) CONF_HANDLE_BOOL(prof_active) CONF_HANDLE_SSIZE_T(lg_prof_sample, 0, (sizeof(uint64_t) << 3) - 1) CONF_HANDLE_BOOL(prof_accum) CONF_HANDLE_SSIZE_T(lg_prof_tcmax, -1, (sizeof(size_t) << 3) - 1) CONF_HANDLE_SSIZE_T(lg_prof_interval, -1, (sizeof(uint64_t) << 3) - 1) CONF_HANDLE_BOOL(prof_gdump) CONF_HANDLE_BOOL(prof_leak) #endif #ifdef JEMALLOC_SWAP CONF_HANDLE_BOOL(overcommit) #endif malloc_conf_error("Invalid conf pair", k, klen, v, vlen); #undef CONF_HANDLE_BOOL #undef CONF_HANDLE_SIZE_T #undef CONF_HANDLE_SSIZE_T #undef CONF_HANDLE_CHAR_P } /* Validate configuration of options that are inter-related. */ if (opt_lg_qspace_max+1 >= opt_lg_cspace_max) { malloc_write(": Invalid lg_[qc]space_max " "relationship; restoring defaults\n"); opt_lg_qspace_max = LG_QSPACE_MAX_DEFAULT; opt_lg_cspace_max = LG_CSPACE_MAX_DEFAULT; } } } static bool malloc_init_hard(void) { arena_t *init_arenas[1]; malloc_mutex_lock(&init_lock); if (malloc_initialized || malloc_initializer == pthread_self()) { /* * Another thread initialized the allocator before this one * acquired init_lock, or this thread is the initializing * thread, and it is recursively allocating. */ malloc_mutex_unlock(&init_lock); return (false); } if (malloc_initializer != (unsigned long)0) { /* Busy-wait until the initializing thread completes. */ do { malloc_mutex_unlock(&init_lock); CPU_SPINWAIT; malloc_mutex_lock(&init_lock); } while (malloc_initialized == false); malloc_mutex_unlock(&init_lock); return (false); } #ifdef DYNAMIC_PAGE_SHIFT /* Get page size. */ { long result; result = sysconf(_SC_PAGESIZE); assert(result != -1); pagesize = (unsigned)result; /* * We assume that pagesize is a power of 2 when calculating * pagesize_mask and lg_pagesize. */ assert(((result - 1) & result) == 0); pagesize_mask = result - 1; lg_pagesize = ffs((int)result) - 1; } #endif #ifdef JEMALLOC_PROF prof_boot0(); #endif malloc_conf_init(); /* Register fork handlers. */ if (pthread_atfork(jemalloc_prefork, jemalloc_postfork, jemalloc_postfork) != 0) { malloc_write(": Error in pthread_atfork()\n"); if (opt_abort) abort(); } if (ctl_boot()) { malloc_mutex_unlock(&init_lock); return (true); } if (opt_stats_print) { /* Print statistics at exit. */ if (atexit(stats_print_atexit) != 0) { malloc_write(": Error in atexit()\n"); if (opt_abort) abort(); } } if (chunk_boot()) { malloc_mutex_unlock(&init_lock); return (true); } if (base_boot()) { malloc_mutex_unlock(&init_lock); return (true); } #ifdef JEMALLOC_PROF prof_boot1(); #endif if (arena_boot()) { malloc_mutex_unlock(&init_lock); return (true); } #ifdef JEMALLOC_TCACHE if (tcache_boot()) { malloc_mutex_unlock(&init_lock); return (true); } #endif if (huge_boot()) { malloc_mutex_unlock(&init_lock); return (true); } #if (defined(JEMALLOC_STATS) && defined(NO_TLS)) /* Initialize allocation counters before any allocations can occur. */ if (pthread_key_create(&thread_allocated_tsd, thread_allocated_cleanup) != 0) { malloc_mutex_unlock(&init_lock); return (true); } #endif /* * Create enough scaffolding to allow recursive allocation in * malloc_ncpus(). */ narenas = 1; arenas = init_arenas; memset(arenas, 0, sizeof(arena_t *) * narenas); /* * Initialize one arena here. The rest are lazily created in * choose_arena_hard(). */ arenas_extend(0); if (arenas[0] == NULL) { malloc_mutex_unlock(&init_lock); return (true); } /* * Assign the initial arena to the initial thread, in order to avoid * spurious creation of an extra arena if the application switches to * threaded mode. */ ARENA_SET(arenas[0]); arenas[0]->nthreads++; if (malloc_mutex_init(&arenas_lock)) return (true); if (pthread_key_create(&arenas_tsd, arenas_cleanup) != 0) { malloc_mutex_unlock(&init_lock); return (true); } #ifdef JEMALLOC_PROF if (prof_boot2()) { malloc_mutex_unlock(&init_lock); return (true); } #endif /* Get number of CPUs. */ malloc_initializer = pthread_self(); malloc_mutex_unlock(&init_lock); ncpus = malloc_ncpus(); malloc_mutex_lock(&init_lock); if (opt_narenas == 0) { /* * For SMP systems, create more than one arena per CPU by * default. */ if (ncpus > 1) opt_narenas = ncpus << 2; else opt_narenas = 1; } narenas = opt_narenas; /* * Make sure that the arenas array can be allocated. In practice, this * limit is enough to allow the allocator to function, but the ctl * machinery will fail to allocate memory at far lower limits. */ if (narenas > chunksize / sizeof(arena_t *)) { char buf[UMAX2S_BUFSIZE]; narenas = chunksize / sizeof(arena_t *); malloc_write(": Reducing narenas to limit ("); malloc_write(u2s(narenas, 10, buf)); malloc_write(")\n"); } /* Allocate and initialize arenas. */ arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas); if (arenas == NULL) { malloc_mutex_unlock(&init_lock); return (true); } /* * Zero the array. In practice, this should always be pre-zeroed, * since it was just mmap()ed, but let's be sure. */ memset(arenas, 0, sizeof(arena_t *) * narenas); /* Copy the pointer to the one arena that was already initialized. */ arenas[0] = init_arenas[0]; #ifdef JEMALLOC_ZONE /* Register the custom zone. */ malloc_zone_register(create_zone()); /* * Convert the default szone to an "overlay zone" that is capable of * deallocating szone-allocated objects, but allocating new objects * from jemalloc. */ szone2ozone(malloc_default_zone()); #endif malloc_initialized = true; malloc_mutex_unlock(&init_lock); return (false); } #ifdef JEMALLOC_ZONE JEMALLOC_ATTR(constructor) void jemalloc_darwin_init(void) { if (malloc_init_hard()) abort(); } #endif /* * End initialization functions. */ /******************************************************************************/ /* * Begin malloc(3)-compatible functions. */ JEMALLOC_ATTR(malloc) JEMALLOC_ATTR(visibility("default")) void * JEMALLOC_P(malloc)(size_t size) { void *ret; #if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS)) size_t usize # ifdef JEMALLOC_CC_SILENCE = 0 # endif ; #endif #ifdef JEMALLOC_PROF prof_thr_cnt_t *cnt # ifdef JEMALLOC_CC_SILENCE = NULL # endif ; #endif if (malloc_init()) { ret = NULL; goto OOM; } if (size == 0) { #ifdef JEMALLOC_SYSV if (opt_sysv == false) #endif size = 1; #ifdef JEMALLOC_SYSV else { # ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in malloc(): " "invalid size 0\n"); abort(); } # endif ret = NULL; goto RETURN; } #endif } #ifdef JEMALLOC_PROF if (opt_prof) { usize = s2u(size); if ((cnt = prof_alloc_prep(usize)) == NULL) { ret = NULL; goto OOM; } if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U && usize <= small_maxclass) { ret = imalloc(small_maxclass+1); if (ret != NULL) arena_prof_promoted(ret, usize); } else ret = imalloc(size); } else #endif { #ifdef JEMALLOC_STATS usize = s2u(size); #endif ret = imalloc(size); } OOM: if (ret == NULL) { #ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in malloc(): " "out of memory\n"); abort(); } #endif errno = ENOMEM; } #ifdef JEMALLOC_SYSV RETURN: #endif #ifdef JEMALLOC_PROF if (opt_prof && ret != NULL) prof_malloc(ret, usize, cnt); #endif #ifdef JEMALLOC_STATS if (ret != NULL) { assert(usize == isalloc(ret)); ALLOCATED_ADD(usize, 0); } #endif return (ret); } JEMALLOC_ATTR(nonnull(1)) JEMALLOC_ATTR(visibility("default")) int JEMALLOC_P(posix_memalign)(void **memptr, size_t alignment, size_t size) { int ret; size_t usize #ifdef JEMALLOC_CC_SILENCE = 0 #endif ; void *result; #ifdef JEMALLOC_PROF prof_thr_cnt_t *cnt # ifdef JEMALLOC_CC_SILENCE = NULL # endif ; #endif if (malloc_init()) result = NULL; else { if (size == 0) { #ifdef JEMALLOC_SYSV if (opt_sysv == false) #endif size = 1; #ifdef JEMALLOC_SYSV else { # ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in " "posix_memalign(): invalid size " "0\n"); abort(); } # endif result = NULL; *memptr = NULL; ret = 0; goto RETURN; } #endif } /* Make sure that alignment is a large enough power of 2. */ if (((alignment - 1) & alignment) != 0 || alignment < sizeof(void *)) { #ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in " "posix_memalign(): invalid alignment\n"); abort(); } #endif result = NULL; ret = EINVAL; goto RETURN; } usize = sa2u(size, alignment, NULL); if (usize == 0) { result = NULL; ret = ENOMEM; goto RETURN; } #ifdef JEMALLOC_PROF if (opt_prof) { if ((cnt = prof_alloc_prep(usize)) == NULL) { result = NULL; ret = EINVAL; } else { if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U && usize <= small_maxclass) { assert(sa2u(small_maxclass+1, alignment, NULL) != 0); result = ipalloc(sa2u(small_maxclass+1, alignment, NULL), alignment, false); if (result != NULL) { arena_prof_promoted(result, usize); } } else { result = ipalloc(usize, alignment, false); } } } else #endif result = ipalloc(usize, alignment, false); } if (result == NULL) { #ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in posix_memalign(): " "out of memory\n"); abort(); } #endif ret = ENOMEM; goto RETURN; } *memptr = result; ret = 0; RETURN: #ifdef JEMALLOC_STATS if (result != NULL) { assert(usize == isalloc(result)); ALLOCATED_ADD(usize, 0); } #endif #ifdef JEMALLOC_PROF if (opt_prof && result != NULL) prof_malloc(result, usize, cnt); #endif return (ret); } JEMALLOC_ATTR(malloc) JEMALLOC_ATTR(visibility("default")) void * JEMALLOC_P(calloc)(size_t num, size_t size) { void *ret; size_t num_size; #if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS)) size_t usize # ifdef JEMALLOC_CC_SILENCE = 0 # endif ; #endif #ifdef JEMALLOC_PROF prof_thr_cnt_t *cnt # ifdef JEMALLOC_CC_SILENCE = NULL # endif ; #endif if (malloc_init()) { num_size = 0; ret = NULL; goto RETURN; } num_size = num * size; if (num_size == 0) { #ifdef JEMALLOC_SYSV if ((opt_sysv == false) && ((num == 0) || (size == 0))) #endif num_size = 1; #ifdef JEMALLOC_SYSV else { ret = NULL; goto RETURN; } #endif /* * Try to avoid division here. We know that it isn't possible to * overflow during multiplication if neither operand uses any of the * most significant half of the bits in a size_t. */ } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2))) && (num_size / size != num)) { /* size_t overflow. */ ret = NULL; goto RETURN; } #ifdef JEMALLOC_PROF if (opt_prof) { usize = s2u(num_size); if ((cnt = prof_alloc_prep(usize)) == NULL) { ret = NULL; goto RETURN; } if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U && usize <= small_maxclass) { ret = icalloc(small_maxclass+1); if (ret != NULL) arena_prof_promoted(ret, usize); } else ret = icalloc(num_size); } else #endif { #ifdef JEMALLOC_STATS usize = s2u(num_size); #endif ret = icalloc(num_size); } RETURN: if (ret == NULL) { #ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in calloc(): out of " "memory\n"); abort(); } #endif errno = ENOMEM; } #ifdef JEMALLOC_PROF if (opt_prof && ret != NULL) prof_malloc(ret, usize, cnt); #endif #ifdef JEMALLOC_STATS if (ret != NULL) { assert(usize == isalloc(ret)); ALLOCATED_ADD(usize, 0); } #endif return (ret); } JEMALLOC_ATTR(visibility("default")) void * JEMALLOC_P(realloc)(void *ptr, size_t size) { void *ret; #if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS)) size_t usize # ifdef JEMALLOC_CC_SILENCE = 0 # endif ; size_t old_size = 0; #endif #ifdef JEMALLOC_PROF prof_thr_cnt_t *cnt # ifdef JEMALLOC_CC_SILENCE = NULL # endif ; prof_ctx_t *old_ctx # ifdef JEMALLOC_CC_SILENCE = NULL # endif ; #endif if (size == 0) { #ifdef JEMALLOC_SYSV if (opt_sysv == false) #endif size = 1; #ifdef JEMALLOC_SYSV else { if (ptr != NULL) { #if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS)) old_size = isalloc(ptr); #endif #ifdef JEMALLOC_PROF if (opt_prof) { old_ctx = prof_ctx_get(ptr); cnt = NULL; } #endif idalloc(ptr); } #ifdef JEMALLOC_PROF else if (opt_prof) { old_ctx = NULL; cnt = NULL; } #endif ret = NULL; goto RETURN; } #endif } if (ptr != NULL) { assert(malloc_initialized || malloc_initializer == pthread_self()); #if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS)) old_size = isalloc(ptr); #endif #ifdef JEMALLOC_PROF if (opt_prof) { usize = s2u(size); old_ctx = prof_ctx_get(ptr); if ((cnt = prof_alloc_prep(usize)) == NULL) { ret = NULL; goto OOM; } if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U && usize <= small_maxclass) { ret = iralloc(ptr, small_maxclass+1, 0, 0, false, false); if (ret != NULL) arena_prof_promoted(ret, usize); } else ret = iralloc(ptr, size, 0, 0, false, false); } else #endif { #ifdef JEMALLOC_STATS usize = s2u(size); #endif ret = iralloc(ptr, size, 0, 0, false, false); } #ifdef JEMALLOC_PROF OOM: #endif if (ret == NULL) { #ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in realloc(): " "out of memory\n"); abort(); } #endif errno = ENOMEM; } } else { #ifdef JEMALLOC_PROF if (opt_prof) old_ctx = NULL; #endif if (malloc_init()) { #ifdef JEMALLOC_PROF if (opt_prof) cnt = NULL; #endif ret = NULL; } else { #ifdef JEMALLOC_PROF if (opt_prof) { usize = s2u(size); if ((cnt = prof_alloc_prep(usize)) == NULL) ret = NULL; else { if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U && usize <= small_maxclass) { ret = imalloc(small_maxclass+1); if (ret != NULL) { arena_prof_promoted(ret, usize); } } else ret = imalloc(size); } } else #endif { #ifdef JEMALLOC_STATS usize = s2u(size); #endif ret = imalloc(size); } } if (ret == NULL) { #ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in realloc(): " "out of memory\n"); abort(); } #endif errno = ENOMEM; } } #ifdef JEMALLOC_SYSV RETURN: #endif #ifdef JEMALLOC_PROF if (opt_prof) prof_realloc(ret, usize, cnt, old_size, old_ctx); #endif #ifdef JEMALLOC_STATS if (ret != NULL) { assert(usize == isalloc(ret)); ALLOCATED_ADD(usize, old_size); } #endif return (ret); } JEMALLOC_ATTR(visibility("default")) void JEMALLOC_P(free)(void *ptr) { if (ptr != NULL) { #if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS)) size_t usize; #endif assert(malloc_initialized || malloc_initializer == pthread_self()); #ifdef JEMALLOC_STATS usize = isalloc(ptr); #endif #ifdef JEMALLOC_PROF if (opt_prof) { # ifndef JEMALLOC_STATS usize = isalloc(ptr); # endif prof_free(ptr, usize); } #endif #ifdef JEMALLOC_STATS ALLOCATED_ADD(0, usize); #endif idalloc(ptr); } } /* * End malloc(3)-compatible functions. */ /******************************************************************************/ /* * Begin non-standard override functions. * * These overrides are omitted if the JEMALLOC_PREFIX is defined, since the * entire point is to avoid accidental mixed allocator usage. */ #ifndef JEMALLOC_PREFIX #ifdef JEMALLOC_OVERRIDE_MEMALIGN JEMALLOC_ATTR(malloc) JEMALLOC_ATTR(visibility("default")) void * JEMALLOC_P(memalign)(size_t alignment, size_t size) { void *ret; #ifdef JEMALLOC_CC_SILENCE int result = #endif JEMALLOC_P(posix_memalign)(&ret, alignment, size); #ifdef JEMALLOC_CC_SILENCE if (result != 0) return (NULL); #endif return (ret); } #endif #ifdef JEMALLOC_OVERRIDE_VALLOC JEMALLOC_ATTR(malloc) JEMALLOC_ATTR(visibility("default")) void * JEMALLOC_P(valloc)(size_t size) { void *ret; #ifdef JEMALLOC_CC_SILENCE int result = #endif JEMALLOC_P(posix_memalign)(&ret, PAGE_SIZE, size); #ifdef JEMALLOC_CC_SILENCE if (result != 0) return (NULL); #endif return (ret); } #endif #endif /* JEMALLOC_PREFIX */ /* * End non-standard override functions. */ /******************************************************************************/ /* * Begin non-standard functions. */ JEMALLOC_ATTR(visibility("default")) size_t JEMALLOC_P(malloc_usable_size)(const void *ptr) { size_t ret; assert(malloc_initialized || malloc_initializer == pthread_self()); #ifdef JEMALLOC_IVSALLOC ret = ivsalloc(ptr); #else assert(ptr != NULL); ret = isalloc(ptr); #endif return (ret); } JEMALLOC_ATTR(visibility("default")) void JEMALLOC_P(malloc_stats_print)(void (*write_cb)(void *, const char *), void *cbopaque, const char *opts) { stats_print(write_cb, cbopaque, opts); } JEMALLOC_ATTR(visibility("default")) int JEMALLOC_P(mallctl)(const char *name, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { if (malloc_init()) return (EAGAIN); return (ctl_byname(name, oldp, oldlenp, newp, newlen)); } JEMALLOC_ATTR(visibility("default")) int JEMALLOC_P(mallctlnametomib)(const char *name, size_t *mibp, size_t *miblenp) { if (malloc_init()) return (EAGAIN); return (ctl_nametomib(name, mibp, miblenp)); } JEMALLOC_ATTR(visibility("default")) int JEMALLOC_P(mallctlbymib)(const size_t *mib, size_t miblen, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { if (malloc_init()) return (EAGAIN); return (ctl_bymib(mib, miblen, oldp, oldlenp, newp, newlen)); } JEMALLOC_INLINE void * iallocm(size_t usize, size_t alignment, bool zero) { assert(usize == ((alignment == 0) ? s2u(usize) : sa2u(usize, alignment, NULL))); if (alignment != 0) return (ipalloc(usize, alignment, zero)); else if (zero) return (icalloc(usize)); else return (imalloc(usize)); } JEMALLOC_ATTR(nonnull(1)) JEMALLOC_ATTR(visibility("default")) int JEMALLOC_P(allocm)(void **ptr, size_t *rsize, size_t size, int flags) { void *p; size_t usize; size_t alignment = (ZU(1) << (flags & ALLOCM_LG_ALIGN_MASK) & (SIZE_T_MAX-1)); bool zero = flags & ALLOCM_ZERO; #ifdef JEMALLOC_PROF prof_thr_cnt_t *cnt; #endif assert(ptr != NULL); assert(size != 0); if (malloc_init()) goto OOM; usize = (alignment == 0) ? s2u(size) : sa2u(size, alignment, NULL); if (usize == 0) goto OOM; #ifdef JEMALLOC_PROF if (opt_prof) { if ((cnt = prof_alloc_prep(usize)) == NULL) goto OOM; if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U && usize <= small_maxclass) { size_t usize_promoted = (alignment == 0) ? s2u(small_maxclass+1) : sa2u(small_maxclass+1, alignment, NULL); assert(usize_promoted != 0); p = iallocm(usize_promoted, alignment, zero); if (p == NULL) goto OOM; arena_prof_promoted(p, usize); } else { p = iallocm(usize, alignment, zero); if (p == NULL) goto OOM; } if (rsize != NULL) *rsize = usize; } else #endif { p = iallocm(usize, alignment, zero); if (p == NULL) goto OOM; #ifndef JEMALLOC_STATS if (rsize != NULL) #endif { #ifdef JEMALLOC_STATS if (rsize != NULL) #endif *rsize = usize; } } *ptr = p; #ifdef JEMALLOC_STATS assert(usize == isalloc(p)); ALLOCATED_ADD(usize, 0); #endif return (ALLOCM_SUCCESS); OOM: #ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in allocm(): " "out of memory\n"); abort(); } #endif *ptr = NULL; return (ALLOCM_ERR_OOM); } JEMALLOC_ATTR(nonnull(1)) JEMALLOC_ATTR(visibility("default")) int JEMALLOC_P(rallocm)(void **ptr, size_t *rsize, size_t size, size_t extra, int flags) { void *p, *q; size_t usize; #if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS)) size_t old_size; #endif size_t alignment = (ZU(1) << (flags & ALLOCM_LG_ALIGN_MASK) & (SIZE_T_MAX-1)); bool zero = flags & ALLOCM_ZERO; bool no_move = flags & ALLOCM_NO_MOVE; #ifdef JEMALLOC_PROF prof_thr_cnt_t *cnt; prof_ctx_t *old_ctx; #endif assert(ptr != NULL); assert(*ptr != NULL); assert(size != 0); assert(SIZE_T_MAX - size >= extra); assert(malloc_initialized || malloc_initializer == pthread_self()); p = *ptr; #ifdef JEMALLOC_PROF if (opt_prof) { /* * usize isn't knowable before iralloc() returns when extra is * non-zero. Therefore, compute its maximum possible value and * use that in prof_alloc_prep() to decide whether to capture a * backtrace. prof_realloc() will use the actual usize to * decide whether to sample. */ size_t max_usize = (alignment == 0) ? s2u(size+extra) : sa2u(size+extra, alignment, NULL); old_size = isalloc(p); old_ctx = prof_ctx_get(p); if ((cnt = prof_alloc_prep(max_usize)) == NULL) goto OOM; if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U && max_usize <= small_maxclass) { q = iralloc(p, small_maxclass+1, (small_maxclass+1 >= size+extra) ? 0 : size+extra - (small_maxclass+1), alignment, zero, no_move); if (q == NULL) goto ERR; usize = isalloc(q); arena_prof_promoted(q, usize); } else { q = iralloc(p, size, extra, alignment, zero, no_move); if (q == NULL) goto ERR; usize = isalloc(q); } prof_realloc(q, usize, cnt, old_size, old_ctx); if (rsize != NULL) *rsize = usize; } else #endif { #ifdef JEMALLOC_STATS old_size = isalloc(p); #endif q = iralloc(p, size, extra, alignment, zero, no_move); if (q == NULL) goto ERR; #ifndef JEMALLOC_STATS if (rsize != NULL) #endif { usize = isalloc(q); #ifdef JEMALLOC_STATS if (rsize != NULL) #endif *rsize = usize; } } *ptr = q; #ifdef JEMALLOC_STATS ALLOCATED_ADD(usize, old_size); #endif return (ALLOCM_SUCCESS); ERR: if (no_move) return (ALLOCM_ERR_NOT_MOVED); #ifdef JEMALLOC_PROF OOM: #endif #ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in rallocm(): " "out of memory\n"); abort(); } #endif return (ALLOCM_ERR_OOM); } JEMALLOC_ATTR(nonnull(1)) JEMALLOC_ATTR(visibility("default")) int JEMALLOC_P(sallocm)(const void *ptr, size_t *rsize, int flags) { size_t sz; assert(malloc_initialized || malloc_initializer == pthread_self()); #ifdef JEMALLOC_IVSALLOC sz = ivsalloc(ptr); #else assert(ptr != NULL); sz = isalloc(ptr); #endif assert(rsize != NULL); *rsize = sz; return (ALLOCM_SUCCESS); } JEMALLOC_ATTR(nonnull(1)) JEMALLOC_ATTR(visibility("default")) int JEMALLOC_P(dallocm)(void *ptr, int flags) { #if (defined(JEMALLOC_PROF) || defined(JEMALLOC_STATS)) size_t usize; #endif assert(ptr != NULL); assert(malloc_initialized || malloc_initializer == pthread_self()); #ifdef JEMALLOC_STATS usize = isalloc(ptr); #endif #ifdef JEMALLOC_PROF if (opt_prof) { # ifndef JEMALLOC_STATS usize = isalloc(ptr); # endif prof_free(ptr, usize); } #endif #ifdef JEMALLOC_STATS ALLOCATED_ADD(0, usize); #endif idalloc(ptr); return (ALLOCM_SUCCESS); } /* * End non-standard functions. */ /******************************************************************************/ /* * The following functions are used by threading libraries for protection of * malloc during fork(). */ void jemalloc_prefork(void) { unsigned i; /* Acquire all mutexes in a safe order. */ malloc_mutex_lock(&arenas_lock); for (i = 0; i < narenas; i++) { if (arenas[i] != NULL) malloc_mutex_lock(&arenas[i]->lock); } malloc_mutex_lock(&base_mtx); malloc_mutex_lock(&huge_mtx); #ifdef JEMALLOC_DSS malloc_mutex_lock(&dss_mtx); #endif #ifdef JEMALLOC_SWAP malloc_mutex_lock(&swap_mtx); #endif } void jemalloc_postfork(void) { unsigned i; /* Release all mutexes, now that fork() has completed. */ #ifdef JEMALLOC_SWAP malloc_mutex_unlock(&swap_mtx); #endif #ifdef JEMALLOC_DSS malloc_mutex_unlock(&dss_mtx); #endif malloc_mutex_unlock(&huge_mtx); malloc_mutex_unlock(&base_mtx); for (i = 0; i < narenas; i++) { if (arenas[i] != NULL) malloc_mutex_unlock(&arenas[i]->lock); } malloc_mutex_unlock(&arenas_lock); } /******************************************************************************/