#ifndef JEMALLOC_INTERNAL_EMAP_H #define JEMALLOC_INTERNAL_EMAP_H #include "jemalloc/internal/mutex_pool.h" #include "jemalloc/internal/rtree.h" typedef struct emap_s emap_t; struct emap_s { rtree_t rtree; /* Keyed by the address of the edata_t being protected. */ mutex_pool_t mtx_pool; }; extern emap_t emap_global; bool emap_init(emap_t *emap); void emap_lock_edata(tsdn_t *tsdn, emap_t *emap, edata_t *edata); void emap_unlock_edata(tsdn_t *tsdn, emap_t *emap, edata_t *edata); void emap_lock_edata2(tsdn_t *tsdn, emap_t *emap, edata_t *edata1, edata_t *edata2); void emap_unlock_edata2(tsdn_t *tsdn, emap_t *emap, edata_t *edata1, edata_t *edata2); edata_t *emap_lock_edata_from_addr(tsdn_t *tsdn, emap_t *emap, rtree_ctx_t *rtree_ctx, void *addr, bool inactive_only); bool emap_rtree_leaf_elms_lookup(tsdn_t *tsdn, emap_t *emap, rtree_ctx_t *rtree_ctx, const edata_t *edata, bool dependent, bool init_missing, rtree_leaf_elm_t **r_elm_a, rtree_leaf_elm_t **r_elm_b); /* Only temporarily public; this will be internal eventually. */ void emap_rtree_write_acquired(tsdn_t *tsdn, emap_t *emap, rtree_leaf_elm_t *elm_a, rtree_leaf_elm_t *elm_b, edata_t *edata, szind_t szind, bool slab); /* * Associate the given edata with its beginning and end address, setting the * szind and slab info appropriately. * Returns true on error (i.e. resource exhaustion). */ bool emap_register_boundary(tsdn_t *tsdn, emap_t *emap, rtree_ctx_t *rtree_ctx, edata_t *edata, szind_t szind, bool slab); /* * Does the same thing, but with the interior of the range, for slab * allocations. * * You might wonder why we don't just have a single emap_register function that * does both depending on the value of 'slab'. The answer is twofold: * - As a practical matter, in places like the extract->split->commit pathway, * we defer the interior operation until we're sure that the commit won't fail * (but we have to register the split boundaries there). * - In general, we're trying to move to a world where the page-specific * allocator doesn't know as much about how the pages it allocates will be * used, and passing a 'slab' parameter everywhere makes that more * complicated. * * Unlike the boundary version, this function can't fail; this is because slabs * can't get big enough to touch a new page that neither of the boundaries * touched, so no allocation is necessary to fill the interior once the boundary * has been touched. */ void emap_register_interior(tsdn_t *tsdn, emap_t *emap, rtree_ctx_t *rtree_ctx, edata_t *edata, szind_t szind); void emap_deregister_boundary(tsdn_t *tsdn, emap_t *emap, rtree_ctx_t *rtree_ctx, edata_t *edata); void emap_deregister_interior(tsdn_t *tsdn, emap_t *emap, rtree_ctx_t *rtree_ctx, edata_t *edata); typedef struct emap_prepare_s emap_prepare_t; struct emap_prepare_s { rtree_leaf_elm_t *lead_elm_a; rtree_leaf_elm_t *lead_elm_b; rtree_leaf_elm_t *trail_elm_a; rtree_leaf_elm_t *trail_elm_b; }; bool emap_split_prepare(tsdn_t *tsdn, emap_t *emap, rtree_ctx_t *rtree_ctx, emap_prepare_t *prepare, edata_t *edata, size_t size_a, szind_t szind_a, bool slab_a, edata_t *trail, size_t size_b, szind_t szind_b, bool slab_b); void emap_split_commit(tsdn_t *tsdn, emap_t *emap, emap_prepare_t *prepare, edata_t *lead, size_t size_a, szind_t szind_a, bool slab_a, edata_t *trail, size_t size_b, szind_t szind_b, bool slab_b); void emap_merge_prepare(tsdn_t *tsdn, emap_t *emap, rtree_ctx_t *rtree_ctx, emap_prepare_t *prepare, edata_t *lead, edata_t *trail); void emap_merge_commit(tsdn_t *tsdn, emap_t *emap, emap_prepare_t *prepare, edata_t *lead, edata_t *trail); #endif /* JEMALLOC_INTERNAL_EMAP_H */