#define JEMALLOC_THREAD_EVENT_C_ #include "jemalloc/internal/jemalloc_preamble.h" #include "jemalloc/internal/jemalloc_internal_includes.h" #include "jemalloc/internal/thread_event.h" /* * There's no lock for thread_event_active because write is only done in * malloc_init(), where init_lock there serves as the guard, and ever since * then thread_event_active becomes read only. */ static bool thread_event_active = false; /* TSD event init function signatures. */ #define E(event, condition) \ static void tsd_thread_##event##_event_init(tsd_t *tsd); ITERATE_OVER_ALL_EVENTS #undef E /* Event handler function signatures. */ #define E(event, condition) \ static void thread_##event##_event_handler(tsd_t *tsd); ITERATE_OVER_ALL_EVENTS #undef E static void tsd_thread_tcache_gc_event_init(tsd_t *tsd) { assert(TCACHE_GC_INCR_BYTES > 0); thread_tcache_gc_event_update(tsd, TCACHE_GC_INCR_BYTES); } static void tsd_thread_prof_sample_event_init(tsd_t *tsd) { assert(config_prof && opt_prof); prof_sample_threshold_update(tsd); } static void thread_tcache_gc_event_handler(tsd_t *tsd) { assert(TCACHE_GC_INCR_BYTES > 0); assert(tcache_gc_event_wait_get(tsd) == 0U); thread_tcache_gc_event_update(tsd, TCACHE_GC_INCR_BYTES); tcache_t *tcache = tcache_get(tsd); if (tcache != NULL) { tcache_event_hard(tsd, tcache); } } static void thread_prof_sample_event_handler(tsd_t *tsd) { assert(config_prof && opt_prof); assert(prof_sample_event_wait_get(tsd) == 0U); uint64_t last_event = thread_allocated_last_event_get(tsd); uint64_t last_sample_event = prof_sample_last_event_get(tsd); prof_sample_last_event_set(tsd, last_event); if (prof_idump_accum(tsd_tsdn(tsd), last_event - last_sample_event)) { prof_idump(tsd_tsdn(tsd)); } if (!prof_active_get_unlocked()) { /* * If prof_active is off, we reset prof_sample_event_wait to be * the sample interval when it drops to 0, so that there won't * be excessive routings to the slow path, and that when * prof_active is turned on later, the counting for sampling * can immediately resume as normal. */ thread_prof_sample_event_update(tsd, (uint64_t)(1 << lg_prof_sample)); } } static uint64_t thread_allocated_next_event_compute(tsd_t *tsd) { uint64_t wait = THREAD_EVENT_MAX_START_WAIT; bool no_event_on = true; #define E(event, condition) \ if (condition) { \ no_event_on = false; \ uint64_t event_wait = \ event##_event_wait_get(tsd); \ assert(event_wait <= THREAD_EVENT_MAX_START_WAIT); \ if (event_wait > 0U && event_wait < wait) { \ wait = event_wait; \ } \ } ITERATE_OVER_ALL_EVENTS #undef E assert(no_event_on == !thread_event_active); assert(wait <= THREAD_EVENT_MAX_START_WAIT); return wait; } void thread_event_assert_invariants_debug(tsd_t *tsd) { uint64_t thread_allocated = thread_allocated_get(tsd); uint64_t last_event = thread_allocated_last_event_get(tsd); uint64_t next_event = thread_allocated_next_event_get(tsd); uint64_t next_event_fast = thread_allocated_next_event_fast_get(tsd); assert(last_event != next_event); if (next_event > THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX || !tsd_fast(tsd)) { assert(next_event_fast == 0U); } else { assert(next_event_fast == next_event); } /* The subtraction is intentionally susceptible to underflow. */ uint64_t interval = next_event - last_event; /* The subtraction is intentionally susceptible to underflow. */ assert(thread_allocated - last_event < interval); uint64_t min_wait = thread_allocated_next_event_compute(tsd); /* * next_event should have been pushed up only except when no event is * on and the TSD is just initialized. The last_event == 0U guard * below is stronger than needed, but having an exactly accurate guard * is more complicated to implement. */ assert((!thread_event_active && last_event == 0U) || interval == min_wait || (interval < min_wait && interval == THREAD_EVENT_MAX_INTERVAL)); } /* * Synchronization around the fast threshold in tsd -- * There are two threads to consider in the synchronization here: * - The owner of the tsd being updated by a slow path change * - The remote thread, doing that slow path change. * * As a design constraint, we want to ensure that a slow-path transition cannot * be ignored for arbitrarily long, and that if the remote thread causes a * slow-path transition and then communicates with the owner thread that it has * occurred, then the owner will go down the slow path on the next allocator * operation (so that we don't want to just wait until the owner hits its slow * path reset condition on its own). * * Here's our strategy to do that: * * The remote thread will update the slow-path stores to TSD variables, issue a * SEQ_CST fence, and then update the TSD next_event_fast counter. The owner * thread will update next_event_fast, issue an SEQ_CST fence, and then check * its TSD to see if it's on the slow path. * This is fairly straightforward when 64-bit atomics are supported. Assume that * the remote fence is sandwiched between two owner fences in the reset pathway. * The case where there is no preceding or trailing owner fence (i.e. because * the owner thread is near the beginning or end of its life) can be analyzed * similarly. The owner store to next_event_fast preceding the earlier owner * fence will be earlier in coherence order than the remote store to it, so that * the owner thread will go down the slow path once the store becomes visible to * it, which is no later than the time of the second fence. * The case where we don't support 64-bit atomics is trickier, since word * tearing is possible. We'll repeat the same analysis, and look at the two * owner fences sandwiching the remote fence. The next_event_fast stores done * alongside the earlier owner fence cannot overwrite any of the remote stores * (since they precede the earlier owner fence in sb, which precedes the remote * fence in sc, which precedes the remote stores in sb). After the second owner * fence there will be a re-check of the slow-path variables anyways, so the * "owner will notice that it's on the slow path eventually" guarantee is * satisfied. To make sure that the out-of-band-messaging constraint is as well, * note that either the message passing is sequenced before the second owner * fence (in which case the remote stores happen before the second set of owner * stores, so malloc sees a value of zero for next_event_fast and goes down the * slow path), or it is not (in which case the owner sees the tsd slow-path * writes on its previous update). This leaves open the possibility that the * remote thread will (at some arbitrary point in the future) zero out one half * of the owner thread's next_event_fast, but that's always safe (it just sends * it down the slow path earlier). */ void thread_event_recompute_fast_threshold(tsd_t *tsd) { if (tsd_state_get(tsd) != tsd_state_nominal) { /* Check first because this is also called on purgatory. */ thread_allocated_next_event_fast_set_non_nominal(tsd); return; } uint64_t next_event = thread_allocated_next_event_get(tsd); uint64_t next_event_fast = (next_event <= THREAD_ALLOCATED_NEXT_EVENT_FAST_MAX) ? next_event : 0U; thread_allocated_next_event_fast_set(tsd, next_event_fast); atomic_fence(ATOMIC_SEQ_CST); if (tsd_state_get(tsd) != tsd_state_nominal) { thread_allocated_next_event_fast_set_non_nominal(tsd); } } static void thread_event_adjust_thresholds_helper(tsd_t *tsd, uint64_t wait) { assert(wait <= THREAD_EVENT_MAX_START_WAIT); uint64_t next_event = thread_allocated_last_event_get(tsd) + (wait <= THREAD_EVENT_MAX_INTERVAL ? wait : THREAD_EVENT_MAX_INTERVAL); thread_allocated_next_event_set(tsd, next_event); } static uint64_t thread_event_trigger_batch_update(tsd_t *tsd, uint64_t accumbytes, bool allow_event_trigger) { uint64_t wait = THREAD_EVENT_MAX_START_WAIT; #define E(event, condition) \ if (condition) { \ uint64_t event_wait = event##_event_wait_get(tsd); \ assert(event_wait <= THREAD_EVENT_MAX_START_WAIT); \ if (event_wait > accumbytes) { \ event_wait -= accumbytes; \ } else { \ event_wait = 0U; \ if (!allow_event_trigger) { \ event_wait = \ THREAD_EVENT_MIN_START_WAIT; \ } \ } \ assert(event_wait <= THREAD_EVENT_MAX_START_WAIT); \ event##_event_wait_set(tsd, event_wait); \ /* \ * If there is a single event, then the remaining wait \ * time may become zero, and we rely on either the \ * event handler or a thread_event_update() call later \ * to properly set next_event; if there are multiple \ * events, then here we can get the minimum remaining \ * wait time to the next already set event. \ */ \ if (event_wait > 0U && event_wait < wait) { \ wait = event_wait; \ } \ } ITERATE_OVER_ALL_EVENTS #undef E assert(wait <= THREAD_EVENT_MAX_START_WAIT); return wait; } void thread_event_trigger(tsd_t *tsd, bool delay_event) { /* usize has already been added to thread_allocated. */ uint64_t thread_allocated_after = thread_allocated_get(tsd); /* The subtraction is intentionally susceptible to underflow. */ uint64_t accumbytes = thread_allocated_after - thread_allocated_last_event_get(tsd); /* Make sure that accumbytes cannot overflow uint64_t. */ assert(THREAD_EVENT_MAX_INTERVAL <= UINT64_MAX - SC_LARGE_MAXCLASS + 1); thread_allocated_last_event_set(tsd, thread_allocated_after); bool allow_event_trigger = !delay_event && tsd_nominal(tsd) && tsd_reentrancy_level_get(tsd) == 0; uint64_t wait = thread_event_trigger_batch_update(tsd, accumbytes, allow_event_trigger); thread_event_adjust_thresholds_helper(tsd, wait); thread_event_assert_invariants(tsd); #define E(event, condition) \ if (condition && event##_event_wait_get(tsd) == 0U) { \ assert(allow_event_trigger); \ thread_##event##_event_handler(tsd); \ } ITERATE_OVER_ALL_EVENTS #undef E thread_event_assert_invariants(tsd); } void thread_event_rollback(tsd_t *tsd, size_t diff) { thread_event_assert_invariants(tsd); if (diff == 0U) { return; } uint64_t thread_allocated = thread_allocated_get(tsd); /* The subtraction is intentionally susceptible to underflow. */ uint64_t thread_allocated_rollback = thread_allocated - diff; thread_allocated_set(tsd, thread_allocated_rollback); uint64_t last_event = thread_allocated_last_event_get(tsd); /* Both subtractions are intentionally susceptible to underflow. */ if (thread_allocated_rollback - last_event <= thread_allocated - last_event) { thread_event_assert_invariants(tsd); return; } thread_allocated_last_event_set(tsd, thread_allocated_rollback); /* The subtraction is intentionally susceptible to underflow. */ uint64_t wait_diff = last_event - thread_allocated_rollback; assert(wait_diff <= diff); #define E(event, condition) \ if (condition) { \ uint64_t event_wait = event##_event_wait_get(tsd); \ assert(event_wait <= THREAD_EVENT_MAX_START_WAIT); \ if (event_wait > 0U) { \ if (wait_diff > \ THREAD_EVENT_MAX_START_WAIT - event_wait) { \ event_wait = \ THREAD_EVENT_MAX_START_WAIT; \ } else { \ event_wait += wait_diff; \ } \ assert(event_wait <= \ THREAD_EVENT_MAX_START_WAIT); \ event##_event_wait_set(tsd, event_wait); \ } \ } ITERATE_OVER_ALL_EVENTS #undef E thread_event_update(tsd); } void thread_event_update(tsd_t *tsd) { uint64_t wait = thread_allocated_next_event_compute(tsd); thread_event_adjust_thresholds_helper(tsd, wait); uint64_t last_event = thread_allocated_last_event_get(tsd); /* Both subtractions are intentionally susceptible to underflow. */ if (thread_allocated_get(tsd) - last_event >= thread_allocated_next_event_get(tsd) - last_event) { thread_event_trigger(tsd, true); } else { thread_event_assert_invariants(tsd); } } void thread_event_boot() { #define E(event, condition) \ if (condition) { \ thread_event_active = true; \ } ITERATE_OVER_ALL_EVENTS #undef E } void tsd_thread_event_init(tsd_t *tsd) { #define E(event, condition) \ if (condition) { \ tsd_thread_##event##_event_init(tsd); \ } ITERATE_OVER_ALL_EVENTS #undef E }