/******************************************************************************/ #ifdef JEMALLOC_H_TYPES /* * Simple linear congruential pseudo-random number generator: * * prng(y) = (a*x + c) % m * * where the following constants ensure maximal period: * * a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4. * c == Odd number (relatively prime to 2^n). * m == 2^32 * * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints. * * This choice of m has the disadvantage that the quality of the bits is * proportional to bit position. For example, the lowest bit has a cycle of 2, * the next has a cycle of 4, etc. For this reason, we prefer to use the upper * bits. */ #define PRNG_A_32 UINT32_C(1103515241) #define PRNG_C_32 UINT32_C(12347) #define PRNG_A_64 UINT64_C(6364136223846793005) #define PRNG_C_64 UINT64_C(1442695040888963407) #endif /* JEMALLOC_H_TYPES */ /******************************************************************************/ #ifdef JEMALLOC_H_STRUCTS #endif /* JEMALLOC_H_STRUCTS */ /******************************************************************************/ #ifdef JEMALLOC_H_EXTERNS #endif /* JEMALLOC_H_EXTERNS */ /******************************************************************************/ #ifdef JEMALLOC_H_INLINES #ifndef JEMALLOC_ENABLE_INLINE uint32_t prng_state_next_u32(uint32_t state); uint64_t prng_state_next_u64(uint64_t state); size_t prng_state_next_zu(size_t state); uint32_t prng_lg_range_u32(uint32_t *state, unsigned lg_range, bool atomic); uint64_t prng_lg_range_u64(uint64_t *state, unsigned lg_range); size_t prng_lg_range_zu(size_t *state, unsigned lg_range, bool atomic); uint32_t prng_range_u32(uint32_t *state, uint32_t range, bool atomic); uint64_t prng_range_u64(uint64_t *state, uint64_t range); size_t prng_range_zu(size_t *state, size_t range, bool atomic); #endif #if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_PRNG_C_)) JEMALLOC_ALWAYS_INLINE uint32_t prng_state_next_u32(uint32_t state) { return ((state * PRNG_A_32) + PRNG_C_32); } JEMALLOC_ALWAYS_INLINE uint64_t prng_state_next_u64(uint64_t state) { return ((state * PRNG_A_64) + PRNG_C_64); } JEMALLOC_ALWAYS_INLINE size_t prng_state_next_zu(size_t state) { #if LG_SIZEOF_PTR == 2 return ((state * PRNG_A_32) + PRNG_C_32); #elif LG_SIZEOF_PTR == 3 return ((state * PRNG_A_64) + PRNG_C_64); #else #error Unsupported pointer size #endif } JEMALLOC_ALWAYS_INLINE uint32_t prng_lg_range_u32(uint32_t *state, unsigned lg_range, bool atomic) { uint32_t ret, state1; assert(lg_range > 0); assert(lg_range <= 32); if (atomic) { uint32_t state0; do { state0 = atomic_read_uint32(state); state1 = prng_state_next_u32(state0); } while (atomic_cas_uint32(state, state0, state1)); } else { state1 = prng_state_next_u32(*state); *state = state1; } ret = state1 >> (32 - lg_range); return (ret); } /* 64-bit atomic operations cannot be supported on all relevant platforms. */ JEMALLOC_ALWAYS_INLINE uint64_t prng_lg_range_u64(uint64_t *state, unsigned lg_range) { uint64_t ret, state1; assert(lg_range > 0); assert(lg_range <= 64); state1 = prng_state_next_u64(*state); *state = state1; ret = state1 >> (64 - lg_range); return (ret); } JEMALLOC_ALWAYS_INLINE size_t prng_lg_range_zu(size_t *state, unsigned lg_range, bool atomic) { size_t ret, state1; assert(lg_range > 0); assert(lg_range <= ZU(1) << (3 + LG_SIZEOF_PTR)); if (atomic) { size_t state0; do { state0 = atomic_read_z(state); state1 = prng_state_next_zu(state0); } while (atomic_cas_z(state, state0, state1)); } else { state1 = prng_state_next_zu(*state); *state = state1; } ret = state1 >> ((ZU(1) << (3 + LG_SIZEOF_PTR)) - lg_range); return (ret); } JEMALLOC_ALWAYS_INLINE uint32_t prng_range_u32(uint32_t *state, uint32_t range, bool atomic) { uint32_t ret; unsigned lg_range; assert(range > 1); /* Compute the ceiling of lg(range). */ lg_range = ffs_u32(pow2_ceil_u32(range)) - 1; /* Generate a result in [0..range) via repeated trial. */ do { ret = prng_lg_range_u32(state, lg_range, atomic); } while (ret >= range); return (ret); } JEMALLOC_ALWAYS_INLINE uint64_t prng_range_u64(uint64_t *state, uint64_t range) { uint64_t ret; unsigned lg_range; assert(range > 1); /* Compute the ceiling of lg(range). */ lg_range = ffs_u64(pow2_ceil_u64(range)) - 1; /* Generate a result in [0..range) via repeated trial. */ do { ret = prng_lg_range_u64(state, lg_range); } while (ret >= range); return (ret); } JEMALLOC_ALWAYS_INLINE size_t prng_range_zu(size_t *state, size_t range, bool atomic) { size_t ret; unsigned lg_range; assert(range > 1); /* Compute the ceiling of lg(range). */ lg_range = ffs_u64(pow2_ceil_u64(range)) - 1; /* Generate a result in [0..range) via repeated trial. */ do { ret = prng_lg_range_zu(state, lg_range, atomic); } while (ret >= range); return (ret); } #endif #endif /* JEMALLOC_H_INLINES */ /******************************************************************************/