#define JEMALLOC_C_ #include "jemalloc/internal/jemalloc_internal.h" /******************************************************************************/ /* Data. */ malloc_mutex_t arenas_lock; arena_t **arenas; unsigned narenas; static unsigned next_arena; #ifndef NO_TLS __thread arena_t *arenas_tls JEMALLOC_ATTR(tls_model("initial-exec")); #else pthread_key_t arenas_tsd; #endif /* Set to true once the allocator has been initialized. */ static bool malloc_initialized = false; /* Used to let the initializing thread recursively allocate. */ static pthread_t malloc_initializer = (unsigned long)0; /* Used to avoid initialization races. */ static malloc_mutex_t init_lock = MALLOC_MUTEX_INITIALIZER; #ifdef DYNAMIC_PAGE_SHIFT size_t pagesize; size_t pagesize_mask; size_t lg_pagesize; #endif unsigned ncpus; /* Runtime configuration options. */ const char *JEMALLOC_P(malloc_options) JEMALLOC_ATTR(visibility("default")); #ifdef JEMALLOC_DEBUG bool opt_abort = true; # ifdef JEMALLOC_FILL bool opt_junk = true; # endif #else bool opt_abort = false; # ifdef JEMALLOC_FILL bool opt_junk = false; # endif #endif #ifdef JEMALLOC_SYSV bool opt_sysv = false; #endif #ifdef JEMALLOC_XMALLOC bool opt_xmalloc = false; #endif #ifdef JEMALLOC_FILL bool opt_zero = false; #endif static int opt_narenas_lshift = 0; /******************************************************************************/ /* Function prototypes for non-inline static functions. */ static void wrtmessage(void *cbopaque, const char *s); static void stats_print_atexit(void); static unsigned malloc_ncpus(void); static bool malloc_init_hard(void); /******************************************************************************/ /* malloc_message() setup. */ #ifdef JEMALLOC_HAVE_ATTR JEMALLOC_ATTR(visibility("hidden")) #else static #endif void wrtmessage(void *cbopaque, const char *s) { write(STDERR_FILENO, s, strlen(s)); } void (*JEMALLOC_P(malloc_message))(void *, const char *s) JEMALLOC_ATTR(visibility("default")) = wrtmessage; /******************************************************************************/ /* * Begin miscellaneous support functions. */ /* Create a new arena and insert it into the arenas array at index ind. */ arena_t * arenas_extend(unsigned ind) { arena_t *ret; /* Allocate enough space for trailing bins. */ ret = (arena_t *)base_alloc(sizeof(arena_t) + (sizeof(arena_bin_t) * (nbins - 1))); if (ret != NULL && arena_new(ret, ind) == false) { arenas[ind] = ret; return (ret); } /* Only reached if there is an OOM error. */ /* * OOM here is quite inconvenient to propagate, since dealing with it * would require a check for failure in the fast path. Instead, punt * by using arenas[0]. In practice, this is an extremely unlikely * failure. */ malloc_write(": Error initializing arena\n"); if (opt_abort) abort(); return (arenas[0]); } /* * Choose an arena based on a per-thread value (slow-path code only, called * only by choose_arena()). */ arena_t * choose_arena_hard(void) { arena_t *ret; if (narenas > 1) { malloc_mutex_lock(&arenas_lock); if ((ret = arenas[next_arena]) == NULL) ret = arenas_extend(next_arena); next_arena = (next_arena + 1) % narenas; malloc_mutex_unlock(&arenas_lock); } else ret = arenas[0]; ARENA_SET(ret); return (ret); } /* * glibc provides a non-standard strerror_r() when _GNU_SOURCE is defined, so * provide a wrapper. */ int buferror(int errnum, char *buf, size_t buflen) { #ifdef _GNU_SOURCE char *b = strerror_r(errno, buf, buflen); if (b != buf) { strncpy(buf, b, buflen); buf[buflen-1] = '\0'; } return (0); #else return (strerror_r(errno, buf, buflen)); #endif } static void stats_print_atexit(void) { #if (defined(JEMALLOC_TCACHE) && defined(JEMALLOC_STATS)) unsigned i; /* * Merge stats from extant threads. This is racy, since individual * threads do not lock when recording tcache stats events. As a * consequence, the final stats may be slightly out of date by the time * they are reported, if other threads continue to allocate. */ for (i = 0; i < narenas; i++) { arena_t *arena = arenas[i]; if (arena != NULL) { tcache_t *tcache; /* * tcache_stats_merge() locks bins, so if any code is * introduced that acquires both arena and bin locks in * the opposite order, deadlocks may result. */ malloc_mutex_lock(&arena->lock); ql_foreach(tcache, &arena->tcache_ql, link) { tcache_stats_merge(tcache, arena); } malloc_mutex_unlock(&arena->lock); } } #endif JEMALLOC_P(malloc_stats_print)(NULL, NULL, NULL); } /* * End miscellaneous support functions. */ /******************************************************************************/ /* * Begin initialization functions. */ static unsigned malloc_ncpus(void) { unsigned ret; long result; result = sysconf(_SC_NPROCESSORS_ONLN); if (result == -1) { /* Error. */ ret = 1; } ret = (unsigned)result; return (ret); } /* * FreeBSD's pthreads implementation calls malloc(3), so the malloc * implementation has to take pains to avoid infinite recursion during * initialization. */ static inline bool malloc_init(void) { if (malloc_initialized == false) return (malloc_init_hard()); return (false); } static bool malloc_init_hard(void) { unsigned i; int linklen; char buf[PATH_MAX + 1]; const char *opts; arena_t *init_arenas[1]; malloc_mutex_lock(&init_lock); if (malloc_initialized || malloc_initializer == pthread_self()) { /* * Another thread initialized the allocator before this one * acquired init_lock, or this thread is the initializing * thread, and it is recursively allocating. */ malloc_mutex_unlock(&init_lock); return (false); } if (malloc_initializer != (unsigned long)0) { /* Busy-wait until the initializing thread completes. */ do { malloc_mutex_unlock(&init_lock); CPU_SPINWAIT; malloc_mutex_lock(&init_lock); } while (malloc_initialized == false); malloc_mutex_unlock(&init_lock); return (false); } #ifdef DYNAMIC_PAGE_SHIFT /* Get page size. */ { long result; result = sysconf(_SC_PAGESIZE); assert(result != -1); pagesize = (unsigned)result; /* * We assume that pagesize is a power of 2 when calculating * pagesize_mask and lg_pagesize. */ assert(((result - 1) & result) == 0); pagesize_mask = result - 1; lg_pagesize = ffs((int)result) - 1; } #endif for (i = 0; i < 3; i++) { unsigned j; /* Get runtime configuration. */ switch (i) { case 0: if ((linklen = readlink("/etc/jemalloc.conf", buf, sizeof(buf) - 1)) != -1) { /* * Use the contents of the "/etc/jemalloc.conf" * symbolic link's name. */ buf[linklen] = '\0'; opts = buf; } else { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; case 1: if ((opts = getenv("JEMALLOC_OPTIONS")) != NULL) { /* * Do nothing; opts is already initialized to * the value of the JEMALLOC_OPTIONS * environment variable. */ } else { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; case 2: if (JEMALLOC_P(malloc_options) != NULL) { /* * Use options that were compiled into the * program. */ opts = JEMALLOC_P(malloc_options); } else { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; default: /* NOTREACHED */ assert(false); buf[0] = '\0'; opts = buf; } for (j = 0; opts[j] != '\0'; j++) { unsigned k, nreps; bool nseen; /* Parse repetition count, if any. */ for (nreps = 0, nseen = false;; j++, nseen = true) { switch (opts[j]) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': nreps *= 10; nreps += opts[j] - '0'; break; default: goto MALLOC_OUT; } } MALLOC_OUT: if (nseen == false) nreps = 1; for (k = 0; k < nreps; k++) { switch (opts[j]) { case 'a': opt_abort = false; break; case 'A': opt_abort = true; break; #ifdef JEMALLOC_PROF case 'b': if (opt_lg_prof_bt_max > 0) opt_lg_prof_bt_max--; break; case 'B': if (opt_lg_prof_bt_max < LG_PROF_BT_MAX) opt_lg_prof_bt_max++; break; #endif case 'c': if (opt_lg_cspace_max - 1 > opt_lg_qspace_max && opt_lg_cspace_max > LG_CACHELINE) opt_lg_cspace_max--; break; case 'C': if (opt_lg_cspace_max < PAGE_SHIFT - 1) opt_lg_cspace_max++; break; case 'd': if (opt_lg_dirty_mult + 1 < (sizeof(size_t) << 3)) opt_lg_dirty_mult++; break; case 'D': if (opt_lg_dirty_mult >= 0) opt_lg_dirty_mult--; break; #ifdef JEMALLOC_PROF case 'e': opt_prof_active = false; break; case 'E': opt_prof_active = true; break; case 'f': opt_prof = false; break; case 'F': opt_prof = true; break; #endif #ifdef JEMALLOC_TCACHE case 'g': if (opt_lg_tcache_gc_sweep >= 0) opt_lg_tcache_gc_sweep--; break; case 'G': if (opt_lg_tcache_gc_sweep + 1 < (sizeof(size_t) << 3)) opt_lg_tcache_gc_sweep++; break; case 'h': opt_tcache = false; break; case 'H': opt_tcache = true; break; #endif #ifdef JEMALLOC_PROF case 'i': if (opt_lg_prof_interval >= 0) opt_lg_prof_interval--; break; case 'I': if (opt_lg_prof_interval + 1 < (sizeof(uint64_t) << 3)) opt_lg_prof_interval++; break; #endif #ifdef JEMALLOC_FILL case 'j': opt_junk = false; break; case 'J': opt_junk = true; break; #endif case 'k': /* * Chunks always require at least one * header page, plus one data page. */ if ((1U << (opt_lg_chunk - 1)) >= (2U << PAGE_SHIFT)) opt_lg_chunk--; break; case 'K': if (opt_lg_chunk + 1 < (sizeof(size_t) << 3)) opt_lg_chunk++; break; #ifdef JEMALLOC_PROF case 'l': opt_prof_leak = false; break; case 'L': opt_prof_leak = true; break; #endif #ifdef JEMALLOC_TCACHE case 'm': if (opt_lg_tcache_maxclass >= 0) opt_lg_tcache_maxclass--; break; case 'M': if (opt_lg_tcache_maxclass + 1 < (sizeof(size_t) << 3)) opt_lg_tcache_maxclass++; break; #endif case 'n': opt_narenas_lshift--; break; case 'N': opt_narenas_lshift++; break; #ifdef JEMALLOC_SWAP case 'o': opt_overcommit = false; break; case 'O': opt_overcommit = true; break; #endif case 'p': opt_stats_print = false; break; case 'P': opt_stats_print = true; break; case 'q': if (opt_lg_qspace_max > LG_QUANTUM) opt_lg_qspace_max--; break; case 'Q': if (opt_lg_qspace_max + 1 < opt_lg_cspace_max) opt_lg_qspace_max++; break; #ifdef JEMALLOC_PROF case 's': if (opt_lg_prof_sample > 0) opt_lg_prof_sample--; break; case 'S': if (opt_lg_prof_sample + 1 < (sizeof(uint64_t) << 3)) opt_lg_prof_sample++; break; case 'u': opt_prof_udump = false; break; case 'U': opt_prof_udump = true; break; #endif #ifdef JEMALLOC_SYSV case 'v': opt_sysv = false; break; case 'V': opt_sysv = true; break; #endif #ifdef JEMALLOC_XMALLOC case 'x': opt_xmalloc = false; break; case 'X': opt_xmalloc = true; break; #endif #ifdef JEMALLOC_FILL case 'z': opt_zero = false; break; case 'Z': opt_zero = true; break; #endif default: { char cbuf[2]; cbuf[0] = opts[j]; cbuf[1] = '\0'; malloc_write( ": Unsupported character " "in malloc options: '"); malloc_write(cbuf); malloc_write("'\n"); } } } } } /* Register fork handlers. */ if (pthread_atfork(jemalloc_prefork, jemalloc_postfork, jemalloc_postfork) != 0) { malloc_write(": Error in pthread_atfork()\n"); if (opt_abort) abort(); } if (ctl_boot()) { malloc_mutex_unlock(&init_lock); return (true); } if (opt_stats_print) { /* Print statistics at exit. */ if (atexit(stats_print_atexit) != 0) { malloc_write(": Error in atexit()\n"); if (opt_abort) abort(); } } if (chunk_boot()) { malloc_mutex_unlock(&init_lock); return (true); } if (base_boot()) { malloc_mutex_unlock(&init_lock); return (true); } #ifdef JEMALLOC_PROF prof_boot0(); #endif if (arena_boot()) { malloc_mutex_unlock(&init_lock); return (true); } #ifdef JEMALLOC_TCACHE tcache_boot(); #endif if (huge_boot()) { malloc_mutex_unlock(&init_lock); return (true); } /* * Create enough scaffolding to allow recursive allocation in * malloc_ncpus(). */ narenas = 1; arenas = init_arenas; memset(arenas, 0, sizeof(arena_t *) * narenas); /* * Initialize one arena here. The rest are lazily created in * choose_arena_hard(). */ arenas_extend(0); if (arenas[0] == NULL) { malloc_mutex_unlock(&init_lock); return (true); } /* * Assign the initial arena to the initial thread, in order to avoid * spurious creation of an extra arena if the application switches to * threaded mode. */ ARENA_SET(arenas[0]); malloc_mutex_init(&arenas_lock); #ifdef JEMALLOC_PROF if (prof_boot1()) { malloc_mutex_unlock(&init_lock); return (true); } #endif /* Get number of CPUs. */ malloc_initializer = pthread_self(); malloc_mutex_unlock(&init_lock); ncpus = malloc_ncpus(); malloc_mutex_lock(&init_lock); if (ncpus > 1) { /* * For SMP systems, create more than one arena per CPU by * default. */ opt_narenas_lshift += 2; } /* Determine how many arenas to use. */ narenas = ncpus; if (opt_narenas_lshift > 0) { if ((narenas << opt_narenas_lshift) > narenas) narenas <<= opt_narenas_lshift; /* * Make sure not to exceed the limits of what base_alloc() can * handle. */ if (narenas * sizeof(arena_t *) > chunksize) narenas = chunksize / sizeof(arena_t *); } else if (opt_narenas_lshift < 0) { if ((narenas >> -opt_narenas_lshift) < narenas) narenas >>= -opt_narenas_lshift; /* Make sure there is at least one arena. */ if (narenas == 0) narenas = 1; } next_arena = (narenas > 0) ? 1 : 0; #ifdef NO_TLS if (pthread_key_create(&arenas_tsd, NULL) != 0) { malloc_mutex_unlock(&init_lock); return (true); } #endif /* Allocate and initialize arenas. */ arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas); if (arenas == NULL) { malloc_mutex_unlock(&init_lock); return (true); } /* * Zero the array. In practice, this should always be pre-zeroed, * since it was just mmap()ed, but let's be sure. */ memset(arenas, 0, sizeof(arena_t *) * narenas); /* Copy the pointer to the one arena that was already initialized. */ arenas[0] = init_arenas[0]; #ifdef JEMALLOC_ZONE /* Register the custom zone. */ malloc_zone_register(create_zone()); /* * Convert the default szone to an "overlay zone" that is capable of * deallocating szone-allocated objects, but allocating new objects * from jemalloc. */ szone2ozone(malloc_default_zone()); #endif malloc_initialized = true; malloc_mutex_unlock(&init_lock); return (false); } #ifdef JEMALLOC_ZONE JEMALLOC_ATTR(constructor) void jemalloc_darwin_init(void) { if (malloc_init_hard()) abort(); } #endif /* * End initialization functions. */ /******************************************************************************/ /* * Begin malloc(3)-compatible functions. */ JEMALLOC_ATTR(malloc) JEMALLOC_ATTR(visibility("default")) void * JEMALLOC_P(malloc)(size_t size) { void *ret; #ifdef JEMALLOC_PROF prof_thr_cnt_t *cnt; #endif if (malloc_init()) { ret = NULL; goto OOM; } if (size == 0) { #ifdef JEMALLOC_SYSV if (opt_sysv == false) #endif size = 1; #ifdef JEMALLOC_SYSV else { # ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in malloc(): " "invalid size 0\n"); abort(); } # endif ret = NULL; goto RETURN; } #endif } #ifdef JEMALLOC_PROF if (opt_prof) { if ((cnt = prof_alloc_prep(size)) == NULL) { ret = NULL; goto OOM; } if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U && size <= small_maxclass) { ret = imalloc(small_maxclass+1); if (ret != NULL) arena_prof_promoted(ret, size); } else ret = imalloc(size); } else #endif ret = imalloc(size); OOM: if (ret == NULL) { #ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in malloc(): " "out of memory\n"); abort(); } #endif errno = ENOMEM; } #ifdef JEMALLOC_SYSV RETURN: #endif #ifdef JEMALLOC_PROF if (opt_prof && ret != NULL) prof_malloc(ret, cnt); #endif return (ret); } JEMALLOC_ATTR(nonnull(1)) JEMALLOC_ATTR(visibility("default")) int JEMALLOC_P(posix_memalign)(void **memptr, size_t alignment, size_t size) { int ret; void *result; #ifdef JEMALLOC_PROF prof_thr_cnt_t *cnt; #endif if (malloc_init()) result = NULL; else { if (size == 0) { #ifdef JEMALLOC_SYSV if (opt_sysv == false) #endif size = 1; #ifdef JEMALLOC_SYSV else { # ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in " "posix_memalign(): invalid size " "0\n"); abort(); } # endif result = NULL; *memptr = NULL; ret = 0; goto RETURN; } #endif } /* Make sure that alignment is a large enough power of 2. */ if (((alignment - 1) & alignment) != 0 || alignment < sizeof(void *)) { #ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in " "posix_memalign(): invalid alignment\n"); abort(); } #endif result = NULL; ret = EINVAL; goto RETURN; } #ifdef JEMALLOC_PROF if (opt_prof) { if ((cnt = prof_alloc_prep(size)) == NULL) { result = NULL; ret = EINVAL; } else { if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U && size <= small_maxclass) { result = ipalloc(small_maxclass+1, alignment, false); if (result != NULL) { arena_prof_promoted(result, size); } } else { result = ipalloc(size, alignment, false); } } } else #endif result = ipalloc(size, alignment, false); } if (result == NULL) { #ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in posix_memalign(): " "out of memory\n"); abort(); } #endif ret = ENOMEM; goto RETURN; } *memptr = result; ret = 0; RETURN: #ifdef JEMALLOC_PROF if (opt_prof && result != NULL) prof_malloc(result, cnt); #endif return (ret); } JEMALLOC_ATTR(malloc) JEMALLOC_ATTR(visibility("default")) void * JEMALLOC_P(calloc)(size_t num, size_t size) { void *ret; size_t num_size; #ifdef JEMALLOC_PROF prof_thr_cnt_t *cnt; #endif if (malloc_init()) { num_size = 0; ret = NULL; goto RETURN; } num_size = num * size; if (num_size == 0) { #ifdef JEMALLOC_SYSV if ((opt_sysv == false) && ((num == 0) || (size == 0))) #endif num_size = 1; #ifdef JEMALLOC_SYSV else { ret = NULL; goto RETURN; } #endif /* * Try to avoid division here. We know that it isn't possible to * overflow during multiplication if neither operand uses any of the * most significant half of the bits in a size_t. */ } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2))) && (num_size / size != num)) { /* size_t overflow. */ ret = NULL; goto RETURN; } #ifdef JEMALLOC_PROF if (opt_prof) { if ((cnt = prof_alloc_prep(num_size)) == NULL) { ret = NULL; goto RETURN; } if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U && num_size <= small_maxclass) { ret = icalloc(small_maxclass+1); if (ret != NULL) arena_prof_promoted(ret, num_size); } else ret = icalloc(num_size); } else #endif ret = icalloc(num_size); RETURN: if (ret == NULL) { #ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in calloc(): out of " "memory\n"); abort(); } #endif errno = ENOMEM; } #ifdef JEMALLOC_PROF if (opt_prof && ret != NULL) prof_malloc(ret, cnt); #endif return (ret); } JEMALLOC_ATTR(visibility("default")) void * JEMALLOC_P(realloc)(void *ptr, size_t size) { void *ret; #ifdef JEMALLOC_PROF size_t old_size; prof_thr_cnt_t *cnt; prof_ctx_t *old_ctx; #endif if (size == 0) { #ifdef JEMALLOC_SYSV if (opt_sysv == false) #endif size = 1; #ifdef JEMALLOC_SYSV else { if (ptr != NULL) { #ifdef JEMALLOC_PROF if (opt_prof) { old_size = isalloc(ptr); old_ctx = prof_ctx_get(ptr); cnt = NULL; } #endif idalloc(ptr); } #ifdef JEMALLOC_PROF else if (opt_prof) { old_size = 0; old_ctx = NULL; cnt = NULL; } #endif ret = NULL; goto RETURN; } #endif } if (ptr != NULL) { assert(malloc_initialized || malloc_initializer == pthread_self()); #ifdef JEMALLOC_PROF if (opt_prof) { old_size = isalloc(ptr); old_ctx = prof_ctx_get(ptr); if ((cnt = prof_alloc_prep(size)) == NULL) { ret = NULL; goto OOM; } if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U && size <= small_maxclass) { ret = iralloc(ptr, small_maxclass+1, 0, 0, false, false); if (ret != NULL) arena_prof_promoted(ret, size); } else ret = iralloc(ptr, size, 0, 0, false, false); } else #endif ret = iralloc(ptr, size, 0, 0, false, false); #ifdef JEMALLOC_PROF OOM: #endif if (ret == NULL) { #ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in realloc(): " "out of memory\n"); abort(); } #endif errno = ENOMEM; } } else { #ifdef JEMALLOC_PROF if (opt_prof) { old_size = 0; old_ctx = NULL; } #endif if (malloc_init()) { #ifdef JEMALLOC_PROF if (opt_prof) cnt = NULL; #endif ret = NULL; } else { #ifdef JEMALLOC_PROF if (opt_prof) { if ((cnt = prof_alloc_prep(size)) == NULL) ret = NULL; else { if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U && size <= small_maxclass) { ret = imalloc(small_maxclass+1); if (ret != NULL) { arena_prof_promoted(ret, size); } } else ret = imalloc(size); } } else #endif ret = imalloc(size); } if (ret == NULL) { #ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in realloc(): " "out of memory\n"); abort(); } #endif errno = ENOMEM; } } #ifdef JEMALLOC_SYSV RETURN: #endif #ifdef JEMALLOC_PROF if (opt_prof) prof_realloc(ret, cnt, ptr, old_size, old_ctx); #endif return (ret); } JEMALLOC_ATTR(visibility("default")) void JEMALLOC_P(free)(void *ptr) { if (ptr != NULL) { assert(malloc_initialized || malloc_initializer == pthread_self()); #ifdef JEMALLOC_PROF if (opt_prof) prof_free(ptr); #endif idalloc(ptr); } } /* * End malloc(3)-compatible functions. */ /******************************************************************************/ /* * Begin non-standard override functions. * * These overrides are omitted if the JEMALLOC_PREFIX is defined, since the * entire point is to avoid accidental mixed allocator usage. */ #ifndef JEMALLOC_PREFIX #ifdef JEMALLOC_OVERRIDE_MEMALIGN JEMALLOC_ATTR(malloc) JEMALLOC_ATTR(visibility("default")) void * JEMALLOC_P(memalign)(size_t alignment, size_t size) { void *ret; posix_memalign(&ret, alignment, size); return (ret); } #endif #ifdef JEMALLOC_OVERRIDE_VALLOC JEMALLOC_ATTR(malloc) JEMALLOC_ATTR(visibility("default")) void * JEMALLOC_P(valloc)(size_t size) { void *ret; posix_memalign(&ret, PAGE_SIZE, size); return (ret); } #endif #endif /* JEMALLOC_PREFIX */ /* * End non-standard override functions. */ /******************************************************************************/ /* * Begin non-standard functions. */ JEMALLOC_ATTR(visibility("default")) size_t JEMALLOC_P(malloc_usable_size)(const void *ptr) { size_t ret; assert(malloc_initialized || malloc_initializer == pthread_self()); #ifdef JEMALLOC_IVSALLOC ret = ivsalloc(ptr); #else assert(ptr != NULL); ret = isalloc(ptr); #endif return (ret); } #ifdef JEMALLOC_SWAP JEMALLOC_ATTR(visibility("default")) int JEMALLOC_P(malloc_swap_enable)(const int *fds, unsigned nfds, int prezeroed) { /* * Make sure malloc is initialized, because we need page size, chunk * size, etc. */ if (malloc_init()) return (-1); return (chunk_swap_enable(fds, nfds, (prezeroed != 0)) ? -1 : 0); } #endif JEMALLOC_ATTR(visibility("default")) void JEMALLOC_P(malloc_stats_print)(void (*write_cb)(void *, const char *), void *cbopaque, const char *opts) { stats_print(write_cb, cbopaque, opts); } JEMALLOC_ATTR(visibility("default")) int JEMALLOC_P(mallctl)(const char *name, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { if (malloc_init()) return (EAGAIN); return (ctl_byname(name, oldp, oldlenp, newp, newlen)); } JEMALLOC_ATTR(visibility("default")) int JEMALLOC_P(mallctlnametomib)(const char *name, size_t *mibp, size_t *miblenp) { if (malloc_init()) return (EAGAIN); return (ctl_nametomib(name, mibp, miblenp)); } JEMALLOC_ATTR(visibility("default")) int JEMALLOC_P(mallctlbymib)(const size_t *mib, size_t miblen, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { if (malloc_init()) return (EAGAIN); return (ctl_bymib(mib, miblen, oldp, oldlenp, newp, newlen)); } JEMALLOC_INLINE void * iallocm(size_t size, size_t alignment, bool zero) { if (alignment != 0) return (ipalloc(size, alignment, zero)); else if (zero) return (icalloc(size)); else return (imalloc(size)); } JEMALLOC_ATTR(nonnull(1)) JEMALLOC_ATTR(visibility("default")) int JEMALLOC_P(allocm)(void **ptr, size_t *rsize, size_t size, int flags) { void *p; size_t alignment = (ZU(1) << (flags & ALLOCM_LG_ALIGN_MASK) & (SIZE_T_MAX-1)); bool zero = flags & ALLOCM_ZERO; #ifdef JEMALLOC_PROF prof_thr_cnt_t *cnt; #endif assert(ptr != NULL); assert(size != 0); if (malloc_init()) goto OOM; #ifdef JEMALLOC_PROF if (opt_prof) { if ((cnt = prof_alloc_prep(size)) == NULL) goto OOM; if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U && size <= small_maxclass) { p = iallocm(small_maxclass+1, alignment, zero); if (p == NULL) goto OOM; arena_prof_promoted(p, size); } else { p = iallocm(size, alignment, zero); if (p == NULL) goto OOM; } } else #endif { p = iallocm(size, alignment, zero); if (p == NULL) goto OOM; } *ptr = p; if (rsize != NULL) *rsize = isalloc(p); return (ALLOCM_SUCCESS); OOM: #ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in allocm(): " "out of memory\n"); abort(); } #endif *ptr = NULL; return (ALLOCM_ERR_OOM); } JEMALLOC_ATTR(nonnull(1)) JEMALLOC_ATTR(visibility("default")) int JEMALLOC_P(rallocm)(void **ptr, size_t *rsize, size_t size, size_t extra, int flags) { void *p, *q; size_t alignment = (ZU(1) << (flags & ALLOCM_LG_ALIGN_MASK) & (SIZE_T_MAX-1)); bool zero = flags & ALLOCM_ZERO; bool no_move = flags & ALLOCM_NO_MOVE; #ifdef JEMALLOC_PROF size_t old_size; prof_thr_cnt_t *cnt; prof_ctx_t *old_ctx; #endif assert(ptr != NULL); assert(*ptr != NULL); assert(size != 0); assert(SIZE_T_MAX - size >= extra); assert(malloc_initialized || malloc_initializer == pthread_self()); p = *ptr; #ifdef JEMALLOC_PROF if (opt_prof) { old_size = isalloc(p); old_ctx = prof_ctx_get(p); if ((cnt = prof_alloc_prep(size)) == NULL) goto OOM; if (prof_promote && (uintptr_t)cnt != (uintptr_t)1U && size <= small_maxclass) { q = iralloc(p, small_maxclass+1, (small_maxclass+1 >= size+extra) ? 0 : size+extra - (small_maxclass+1), alignment, zero, no_move); if (q == NULL) goto ERR; arena_prof_promoted(q, size); } else { q = iralloc(p, size, extra, alignment, zero, no_move); if (q == NULL) goto ERR; } prof_realloc(q, cnt, p, old_size, old_ctx); } else #endif { q = iralloc(p, size, extra, alignment, zero, no_move); if (q == NULL) goto ERR; } *ptr = q; if (rsize != NULL) *rsize = isalloc(q); return (ALLOCM_SUCCESS); ERR: if (no_move) return (ALLOCM_ERR_NOT_MOVED); #ifdef JEMALLOC_PROF OOM: #endif #ifdef JEMALLOC_XMALLOC if (opt_xmalloc) { malloc_write(": Error in rallocm(): " "out of memory\n"); abort(); } #endif return (ALLOCM_ERR_OOM); } JEMALLOC_ATTR(nonnull(1)) JEMALLOC_ATTR(visibility("default")) int JEMALLOC_P(sallocm)(const void *ptr, size_t *rsize, int flags) { size_t sz; assert(malloc_initialized || malloc_initializer == pthread_self()); #ifdef JEMALLOC_IVSALLOC sz = ivsalloc(ptr); #else assert(ptr != NULL); sz = isalloc(ptr); #endif assert(rsize != NULL); *rsize = sz; return (ALLOCM_SUCCESS); } JEMALLOC_ATTR(nonnull(1)) JEMALLOC_ATTR(visibility("default")) int JEMALLOC_P(dallocm)(void *ptr, int flags) { assert(ptr != NULL); assert(malloc_initialized || malloc_initializer == pthread_self()); #ifdef JEMALLOC_PROF if (opt_prof) prof_free(ptr); #endif idalloc(ptr); return (ALLOCM_SUCCESS); } /* * End non-standard functions. */ /******************************************************************************/ /* * The following functions are used by threading libraries for protection of * malloc during fork(). */ void jemalloc_prefork(void) { unsigned i; /* Acquire all mutexes in a safe order. */ malloc_mutex_lock(&arenas_lock); for (i = 0; i < narenas; i++) { if (arenas[i] != NULL) malloc_mutex_lock(&arenas[i]->lock); } malloc_mutex_lock(&base_mtx); malloc_mutex_lock(&huge_mtx); #ifdef JEMALLOC_DSS malloc_mutex_lock(&dss_mtx); #endif #ifdef JEMALLOC_SWAP malloc_mutex_lock(&swap_mtx); #endif } void jemalloc_postfork(void) { unsigned i; /* Release all mutexes, now that fork() has completed. */ #ifdef JEMALLOC_SWAP malloc_mutex_unlock(&swap_mtx); #endif #ifdef JEMALLOC_DSS malloc_mutex_unlock(&dss_mtx); #endif malloc_mutex_unlock(&huge_mtx); malloc_mutex_unlock(&base_mtx); for (i = 0; i < narenas; i++) { if (arenas[i] != NULL) malloc_mutex_unlock(&arenas[i]->lock); } malloc_mutex_unlock(&arenas_lock); } /******************************************************************************/