#define JEMALLOC_HUGE_C_ #include "jemalloc/internal/jemalloc_internal.h" /******************************************************************************/ /* Data. */ uint64_t huge_nmalloc; uint64_t huge_ndalloc; size_t huge_allocated; malloc_mutex_t huge_mtx; /******************************************************************************/ /* Tree of chunks that are stand-alone huge allocations. */ static extent_tree_t huge; void * huge_malloc(size_t size, bool zero) { return (huge_palloc(size, chunksize, zero)); } void * huge_palloc(size_t size, size_t alignment, bool zero) { void *ret; size_t csize; extent_node_t *node; bool is_zeroed; /* Allocate one or more contiguous chunks for this request. */ csize = CHUNK_CEILING(size); if (csize == 0) { /* size is large enough to cause size_t wrap-around. */ return (NULL); } /* Allocate an extent node with which to track the chunk. */ node = base_node_alloc(); if (node == NULL) return (NULL); /* * Copy zero into is_zeroed and pass the copy to chunk_alloc(), so that * it is possible to make correct junk/zero fill decisions below. */ is_zeroed = zero; ret = chunk_alloc(csize, alignment, false, &is_zeroed, chunk_dss_prec_get()); if (ret == NULL) { base_node_dealloc(node); return (NULL); } /* Insert node into huge. */ node->addr = ret; node->size = csize; malloc_mutex_lock(&huge_mtx); extent_tree_ad_insert(&huge, node); if (config_stats) { stats_cactive_add(csize); huge_nmalloc++; huge_allocated += csize; } malloc_mutex_unlock(&huge_mtx); if (config_fill && zero == false) { if (opt_junk) memset(ret, 0xa5, csize); else if (opt_zero && is_zeroed == false) memset(ret, 0, csize); } return (ret); } void * huge_ralloc_no_move(void *ptr, size_t oldsize, size_t size, size_t extra) { /* * Avoid moving the allocation if the size class can be left the same. */ if (oldsize > arena_maxclass && CHUNK_CEILING(oldsize) >= CHUNK_CEILING(size) && CHUNK_CEILING(oldsize) <= CHUNK_CEILING(size+extra)) { assert(CHUNK_CEILING(oldsize) == oldsize); return (ptr); } /* Reallocation would require a move. */ return (NULL); } void * huge_ralloc(void *ptr, size_t oldsize, size_t size, size_t extra, size_t alignment, bool zero, bool try_tcache_dalloc) { void *ret; size_t copysize; /* Try to avoid moving the allocation. */ ret = huge_ralloc_no_move(ptr, oldsize, size, extra); if (ret != NULL) return (ret); /* * size and oldsize are different enough that we need to use a * different size class. In that case, fall back to allocating new * space and copying. */ if (alignment > chunksize) ret = huge_palloc(size + extra, alignment, zero); else ret = huge_malloc(size + extra, zero); if (ret == NULL) { if (extra == 0) return (NULL); /* Try again, this time without extra. */ if (alignment > chunksize) ret = huge_palloc(size, alignment, zero); else ret = huge_malloc(size, zero); if (ret == NULL) return (NULL); } /* * Copy at most size bytes (not size+extra), since the caller has no * expectation that the extra bytes will be reliably preserved. */ copysize = (size < oldsize) ? size : oldsize; #ifdef JEMALLOC_MREMAP /* * Use mremap(2) if this is a huge-->huge reallocation, and neither the * source nor the destination are in dss. */ if (oldsize >= chunksize && (config_dss == false || (chunk_in_dss(ptr) == false && chunk_in_dss(ret) == false))) { size_t newsize = huge_salloc(ret); /* * Remove ptr from the tree of huge allocations before * performing the remap operation, in order to avoid the * possibility of another thread acquiring that mapping before * this one removes it from the tree. */ huge_dalloc(ptr, false); if (mremap(ptr, oldsize, newsize, MREMAP_MAYMOVE|MREMAP_FIXED, ret) == MAP_FAILED) { /* * Assuming no chunk management bugs in the allocator, * the only documented way an error can occur here is * if the application changed the map type for a * portion of the old allocation. This is firmly in * undefined behavior territory, so write a diagnostic * message, and optionally abort. */ char buf[BUFERROR_BUF]; buferror(get_errno(), buf, sizeof(buf)); malloc_printf(": Error in mremap(): %s\n", buf); if (opt_abort) abort(); memcpy(ret, ptr, copysize); chunk_dealloc_mmap(ptr, oldsize); } } else #endif { memcpy(ret, ptr, copysize); iqalloct(ptr, try_tcache_dalloc); } return (ret); } #ifdef JEMALLOC_JET #undef huge_dalloc_junk #define huge_dalloc_junk JEMALLOC_N(huge_dalloc_junk_impl) #endif static void huge_dalloc_junk(void *ptr, size_t usize) { if (config_fill && config_dss && opt_junk) { /* * Only bother junk filling if the chunk isn't about to be * unmapped. */ if (config_munmap == false || (config_dss && chunk_in_dss(ptr))) memset(ptr, 0x5a, usize); } } #ifdef JEMALLOC_JET #undef huge_dalloc_junk #define huge_dalloc_junk JEMALLOC_N(huge_dalloc_junk) huge_dalloc_junk_t *huge_dalloc_junk = JEMALLOC_N(huge_dalloc_junk_impl); #endif void huge_dalloc(void *ptr, bool unmap) { extent_node_t *node, key; malloc_mutex_lock(&huge_mtx); /* Extract from tree of huge allocations. */ key.addr = ptr; node = extent_tree_ad_search(&huge, &key); assert(node != NULL); assert(node->addr == ptr); extent_tree_ad_remove(&huge, node); if (config_stats) { stats_cactive_sub(node->size); huge_ndalloc++; huge_allocated -= node->size; } malloc_mutex_unlock(&huge_mtx); if (unmap) huge_dalloc_junk(node->addr, node->size); chunk_dealloc(node->addr, node->size, unmap); base_node_dealloc(node); } size_t huge_salloc(const void *ptr) { size_t ret; extent_node_t *node, key; malloc_mutex_lock(&huge_mtx); /* Extract from tree of huge allocations. */ key.addr = __DECONST(void *, ptr); node = extent_tree_ad_search(&huge, &key); assert(node != NULL); ret = node->size; malloc_mutex_unlock(&huge_mtx); return (ret); } prof_ctx_t * huge_prof_ctx_get(const void *ptr) { prof_ctx_t *ret; extent_node_t *node, key; malloc_mutex_lock(&huge_mtx); /* Extract from tree of huge allocations. */ key.addr = __DECONST(void *, ptr); node = extent_tree_ad_search(&huge, &key); assert(node != NULL); ret = node->prof_ctx; malloc_mutex_unlock(&huge_mtx); return (ret); } void huge_prof_ctx_set(const void *ptr, prof_ctx_t *ctx) { extent_node_t *node, key; malloc_mutex_lock(&huge_mtx); /* Extract from tree of huge allocations. */ key.addr = __DECONST(void *, ptr); node = extent_tree_ad_search(&huge, &key); assert(node != NULL); node->prof_ctx = ctx; malloc_mutex_unlock(&huge_mtx); } bool huge_boot(void) { /* Initialize chunks data. */ if (malloc_mutex_init(&huge_mtx)) return (true); extent_tree_ad_new(&huge); if (config_stats) { huge_nmalloc = 0; huge_ndalloc = 0; huge_allocated = 0; } return (false); } void huge_prefork(void) { malloc_mutex_prefork(&huge_mtx); } void huge_postfork_parent(void) { malloc_mutex_postfork_parent(&huge_mtx); } void huge_postfork_child(void) { malloc_mutex_postfork_child(&huge_mtx); }