#define JEMALLOC_THREAD_EVENT_C_ #include "jemalloc/internal/jemalloc_preamble.h" #include "jemalloc/internal/jemalloc_internal_includes.h" #include "jemalloc/internal/thread_event.h" /* TSD event init function signatures. */ #define E(event, condition_unused, is_alloc_event_unused) \ static void te_tsd_##event##_event_init(tsd_t *tsd); ITERATE_OVER_ALL_EVENTS #undef E /* Event handler function signatures. */ #define E(event, condition_unused, is_alloc_event_unused) \ static void te_##event##_event_handler(tsd_t *tsd); ITERATE_OVER_ALL_EVENTS #undef E /* (Re)Init functions. */ static void te_tsd_tcache_gc_event_init(tsd_t *tsd) { assert(TCACHE_GC_INCR_BYTES > 0); te_tcache_gc_event_update(tsd, TCACHE_GC_INCR_BYTES); } static void te_tsd_tcache_gc_dalloc_event_init(tsd_t *tsd) { assert(TCACHE_GC_INCR_BYTES > 0); te_tcache_gc_dalloc_event_update(tsd, TCACHE_GC_INCR_BYTES); } static void te_tsd_prof_sample_event_init(tsd_t *tsd) { assert(config_prof && opt_prof); prof_sample_threshold_update(tsd); } static void te_tsd_stats_interval_event_init(tsd_t *tsd) { assert(opt_stats_interval >= 0); uint64_t interval = stats_interval_accum_batch_size(); te_stats_interval_event_update(tsd, interval); } /* Handler functions. */ static void tcache_gc_event(tsd_t *tsd) { assert(TCACHE_GC_INCR_BYTES > 0); tcache_t *tcache = tcache_get(tsd); if (tcache != NULL) { tcache_event_hard(tsd, tcache); } } static void te_tcache_gc_event_handler(tsd_t *tsd) { assert(tcache_gc_event_wait_get(tsd) == 0U); te_tsd_tcache_gc_event_init(tsd); tcache_gc_event(tsd); } static void te_tcache_gc_dalloc_event_handler(tsd_t *tsd) { assert(tcache_gc_dalloc_event_wait_get(tsd) == 0U); te_tsd_tcache_gc_dalloc_event_init(tsd); tcache_gc_event(tsd); } static void te_prof_sample_event_handler(tsd_t *tsd) { assert(config_prof && opt_prof); assert(prof_sample_event_wait_get(tsd) == 0U); uint64_t last_event = thread_allocated_last_event_get(tsd); uint64_t last_sample_event = prof_sample_last_event_get(tsd); prof_sample_last_event_set(tsd, last_event); if (prof_idump_accum(tsd_tsdn(tsd), last_event - last_sample_event)) { prof_idump(tsd_tsdn(tsd)); } te_tsd_prof_sample_event_init(tsd); } static void te_stats_interval_event_handler(tsd_t *tsd) { assert(opt_stats_interval >= 0); assert(stats_interval_event_wait_get(tsd) == 0U); uint64_t last_event = thread_allocated_last_event_get(tsd); uint64_t last_stats_event = stats_interval_last_event_get(tsd); stats_interval_last_event_set(tsd, last_event); if (stats_interval_accum(tsd, last_event - last_stats_event)) { je_malloc_stats_print(NULL, NULL, opt_stats_interval_opts); } te_tsd_stats_interval_event_init(tsd); } /* Per event facilities done. */ static bool te_ctx_has_active_events(te_ctx_t *ctx) { assert(config_debug); #define E(event, condition, alloc_event) \ if (condition && alloc_event == ctx->is_alloc) { \ return true; \ } ITERATE_OVER_ALL_EVENTS #undef E return false; } static uint64_t te_next_event_compute(tsd_t *tsd, bool is_alloc) { uint64_t wait = TE_MAX_START_WAIT; #define E(event, condition, alloc_event) \ if (is_alloc == alloc_event && condition) { \ uint64_t event_wait = \ event##_event_wait_get(tsd); \ assert(event_wait <= TE_MAX_START_WAIT); \ if (event_wait > 0U && event_wait < wait) { \ wait = event_wait; \ } \ } ITERATE_OVER_ALL_EVENTS #undef E assert(wait <= TE_MAX_START_WAIT); return wait; } static void te_assert_invariants_impl(tsd_t *tsd, te_ctx_t *ctx) { uint64_t current_bytes = te_ctx_current_bytes_get(ctx); uint64_t last_event = te_ctx_last_event_get(ctx); uint64_t next_event = te_ctx_next_event_get(ctx); uint64_t next_event_fast = te_ctx_next_event_fast_get(ctx); assert(last_event != next_event); if (next_event > TE_NEXT_EVENT_FAST_MAX || !tsd_fast(tsd)) { assert(next_event_fast == 0U); } else { assert(next_event_fast == next_event); } /* The subtraction is intentionally susceptible to underflow. */ uint64_t interval = next_event - last_event; /* The subtraction is intentionally susceptible to underflow. */ assert(current_bytes - last_event < interval); uint64_t min_wait = te_next_event_compute(tsd, te_ctx_is_alloc(ctx)); /* * next_event should have been pushed up only except when no event is * on and the TSD is just initialized. The last_event == 0U guard * below is stronger than needed, but having an exactly accurate guard * is more complicated to implement. */ assert((!te_ctx_has_active_events(ctx) && last_event == 0U) || interval == min_wait || (interval < min_wait && interval == TE_MAX_INTERVAL)); } void te_assert_invariants_debug(tsd_t *tsd) { te_ctx_t ctx; te_ctx_get(tsd, &ctx, true); te_assert_invariants_impl(tsd, &ctx); te_ctx_get(tsd, &ctx, false); te_assert_invariants_impl(tsd, &ctx); } /* * Synchronization around the fast threshold in tsd -- * There are two threads to consider in the synchronization here: * - The owner of the tsd being updated by a slow path change * - The remote thread, doing that slow path change. * * As a design constraint, we want to ensure that a slow-path transition cannot * be ignored for arbitrarily long, and that if the remote thread causes a * slow-path transition and then communicates with the owner thread that it has * occurred, then the owner will go down the slow path on the next allocator * operation (so that we don't want to just wait until the owner hits its slow * path reset condition on its own). * * Here's our strategy to do that: * * The remote thread will update the slow-path stores to TSD variables, issue a * SEQ_CST fence, and then update the TSD next_event_fast counter. The owner * thread will update next_event_fast, issue an SEQ_CST fence, and then check * its TSD to see if it's on the slow path. * This is fairly straightforward when 64-bit atomics are supported. Assume that * the remote fence is sandwiched between two owner fences in the reset pathway. * The case where there is no preceding or trailing owner fence (i.e. because * the owner thread is near the beginning or end of its life) can be analyzed * similarly. The owner store to next_event_fast preceding the earlier owner * fence will be earlier in coherence order than the remote store to it, so that * the owner thread will go down the slow path once the store becomes visible to * it, which is no later than the time of the second fence. * The case where we don't support 64-bit atomics is trickier, since word * tearing is possible. We'll repeat the same analysis, and look at the two * owner fences sandwiching the remote fence. The next_event_fast stores done * alongside the earlier owner fence cannot overwrite any of the remote stores * (since they precede the earlier owner fence in sb, which precedes the remote * fence in sc, which precedes the remote stores in sb). After the second owner * fence there will be a re-check of the slow-path variables anyways, so the * "owner will notice that it's on the slow path eventually" guarantee is * satisfied. To make sure that the out-of-band-messaging constraint is as well, * note that either the message passing is sequenced before the second owner * fence (in which case the remote stores happen before the second set of owner * stores, so malloc sees a value of zero for next_event_fast and goes down the * slow path), or it is not (in which case the owner sees the tsd slow-path * writes on its previous update). This leaves open the possibility that the * remote thread will (at some arbitrary point in the future) zero out one half * of the owner thread's next_event_fast, but that's always safe (it just sends * it down the slow path earlier). */ static void te_ctx_next_event_fast_update(te_ctx_t *ctx) { uint64_t next_event = te_ctx_next_event_get(ctx); uint64_t next_event_fast = (next_event <= TE_NEXT_EVENT_FAST_MAX) ? next_event : 0U; te_ctx_next_event_fast_set(ctx, next_event_fast); } void te_recompute_fast_threshold(tsd_t *tsd) { if (tsd_state_get(tsd) != tsd_state_nominal) { /* Check first because this is also called on purgatory. */ te_next_event_fast_set_non_nominal(tsd); return; } te_ctx_t ctx; te_ctx_get(tsd, &ctx, true); te_ctx_next_event_fast_update(&ctx); te_ctx_get(tsd, &ctx, false); te_ctx_next_event_fast_update(&ctx); atomic_fence(ATOMIC_SEQ_CST); if (tsd_state_get(tsd) != tsd_state_nominal) { te_next_event_fast_set_non_nominal(tsd); } } static void te_adjust_thresholds_helper(tsd_t *tsd, te_ctx_t *ctx, uint64_t wait) { assert(wait <= TE_MAX_START_WAIT); uint64_t next_event = te_ctx_last_event_get(ctx) + (wait <= TE_MAX_INTERVAL ? wait : TE_MAX_INTERVAL); te_ctx_next_event_set(tsd, ctx, next_event); } static uint64_t te_batch_accum(tsd_t *tsd, uint64_t accumbytes, bool is_alloc, bool allow_event_trigger) { uint64_t wait = TE_MAX_START_WAIT; #define E(event, condition, alloc_event) \ if (is_alloc == alloc_event && condition) { \ uint64_t event_wait = event##_event_wait_get(tsd); \ assert(event_wait <= TE_MAX_START_WAIT); \ if (event_wait > accumbytes) { \ event_wait -= accumbytes; \ } else { \ event_wait = 0U; \ if (!allow_event_trigger) { \ event_wait = TE_MIN_START_WAIT; \ } \ } \ assert(event_wait <= TE_MAX_START_WAIT); \ event##_event_wait_set(tsd, event_wait); \ /* \ * If there is a single event, then the remaining wait \ * time may become zero, and we rely on either the \ * event handler or a te_event_update() call later \ * to properly set next_event; if there are multiple \ * events, then here we can get the minimum remaining \ * wait time to the next already set event. \ */ \ if (event_wait > 0U && event_wait < wait) { \ wait = event_wait; \ } \ } ITERATE_OVER_ALL_EVENTS #undef E assert(wait <= TE_MAX_START_WAIT); return wait; } void te_event_trigger(tsd_t *tsd, te_ctx_t *ctx, bool delay_event) { /* usize has already been added to thread_allocated. */ uint64_t bytes_after = te_ctx_current_bytes_get(ctx); /* The subtraction is intentionally susceptible to underflow. */ uint64_t accumbytes = bytes_after - te_ctx_last_event_get(ctx); te_ctx_last_event_set(ctx, bytes_after); bool allow_event_trigger = !delay_event && tsd_nominal(tsd) && tsd_reentrancy_level_get(tsd) == 0; bool is_alloc = ctx->is_alloc; uint64_t wait = te_batch_accum(tsd, accumbytes, is_alloc, allow_event_trigger); te_adjust_thresholds_helper(tsd, ctx, wait); te_assert_invariants(tsd); #define E(event, condition, alloc_event) \ if (is_alloc == alloc_event && condition && \ event##_event_wait_get(tsd) == 0U) { \ assert(allow_event_trigger); \ te_##event##_event_handler(tsd); \ } ITERATE_OVER_ALL_EVENTS #undef E te_assert_invariants(tsd); } void te_event_update(tsd_t *tsd, bool is_alloc) { te_ctx_t ctx; te_ctx_get(tsd, &ctx, is_alloc); uint64_t wait = te_next_event_compute(tsd, is_alloc); te_adjust_thresholds_helper(tsd, &ctx, wait); uint64_t last_event = te_ctx_last_event_get(&ctx); /* Both subtractions are intentionally susceptible to underflow. */ if (te_ctx_current_bytes_get(&ctx) - last_event >= te_ctx_next_event_get(&ctx) - last_event) { te_event_trigger(tsd, &ctx, true); } else { te_assert_invariants(tsd); } } void tsd_te_init(tsd_t *tsd) { /* Make sure no overflow for the bytes accumulated on event_trigger. */ assert(TE_MAX_INTERVAL <= UINT64_MAX - SC_LARGE_MAXCLASS + 1); #define E(event, condition, is_alloc_event_unused) \ if (condition) { \ te_tsd_##event##_event_init(tsd); \ } ITERATE_OVER_ALL_EVENTS #undef E }