#define JEMALLOC_CHUNK_DSS_C_ #include "jemalloc/internal/jemalloc_internal.h" /******************************************************************************/ /* Data. */ const char *dss_prec_names[] = { "disabled", "primary", "secondary", "N/A" }; /* Current dss precedence default, used when creating new arenas. */ static dss_prec_t dss_prec_default = DSS_PREC_DEFAULT; /* * Protects sbrk() calls. This avoids malloc races among threads, though it * does not protect against races with threads that call sbrk() directly. */ static malloc_mutex_t dss_mtx; /* Base address of the DSS. */ static void *dss_base; /* Current end of the DSS, or ((void *)-1) if the DSS is exhausted. */ static void *dss_prev; /* Current upper limit on DSS addresses. */ static void *dss_max; /******************************************************************************/ static void * chunk_dss_sbrk(intptr_t increment) { #ifdef JEMALLOC_DSS return (sbrk(increment)); #else not_implemented(); return (NULL); #endif } dss_prec_t chunk_dss_prec_get(void) { dss_prec_t ret; if (have_dss == false) return (dss_prec_disabled); malloc_mutex_lock(&dss_mtx); ret = dss_prec_default; malloc_mutex_unlock(&dss_mtx); return (ret); } bool chunk_dss_prec_set(dss_prec_t dss_prec) { if (have_dss == false) return (dss_prec != dss_prec_disabled); malloc_mutex_lock(&dss_mtx); dss_prec_default = dss_prec; malloc_mutex_unlock(&dss_mtx); return (false); } void * chunk_alloc_dss(size_t size, size_t alignment, bool *zero) { void *ret; cassert(have_dss); assert(size > 0 && (size & chunksize_mask) == 0); assert(alignment > 0 && (alignment & chunksize_mask) == 0); /* * sbrk() uses a signed increment argument, so take care not to * interpret a huge allocation request as a negative increment. */ if ((intptr_t)size < 0) return (NULL); malloc_mutex_lock(&dss_mtx); if (dss_prev != (void *)-1) { size_t gap_size, cpad_size; void *cpad, *dss_next; intptr_t incr; /* * The loop is necessary to recover from races with other * threads that are using the DSS for something other than * malloc. */ do { /* Get the current end of the DSS. */ dss_max = chunk_dss_sbrk(0); /* * Calculate how much padding is necessary to * chunk-align the end of the DSS. */ gap_size = (chunksize - CHUNK_ADDR2OFFSET(dss_max)) & chunksize_mask; /* * Compute how much chunk-aligned pad space (if any) is * necessary to satisfy alignment. This space can be * recycled for later use. */ cpad = (void *)((uintptr_t)dss_max + gap_size); ret = (void *)ALIGNMENT_CEILING((uintptr_t)dss_max, alignment); cpad_size = (uintptr_t)ret - (uintptr_t)cpad; dss_next = (void *)((uintptr_t)ret + size); if ((uintptr_t)ret < (uintptr_t)dss_max || (uintptr_t)dss_next < (uintptr_t)dss_max) { /* Wrap-around. */ malloc_mutex_unlock(&dss_mtx); return (NULL); } incr = gap_size + cpad_size + size; dss_prev = chunk_dss_sbrk(incr); if (dss_prev == dss_max) { /* Success. */ dss_max = dss_next; malloc_mutex_unlock(&dss_mtx); if (cpad_size != 0) chunk_unmap(cpad, cpad_size); if (*zero) { JEMALLOC_VALGRIND_MAKE_MEM_UNDEFINED( ret, size); memset(ret, 0, size); } return (ret); } } while (dss_prev != (void *)-1); } malloc_mutex_unlock(&dss_mtx); return (NULL); } bool chunk_in_dss(void *chunk) { bool ret; cassert(have_dss); malloc_mutex_lock(&dss_mtx); if ((uintptr_t)chunk >= (uintptr_t)dss_base && (uintptr_t)chunk < (uintptr_t)dss_max) ret = true; else ret = false; malloc_mutex_unlock(&dss_mtx); return (ret); } bool chunk_dss_boot(void) { cassert(have_dss); if (malloc_mutex_init(&dss_mtx)) return (true); dss_base = chunk_dss_sbrk(0); dss_prev = dss_base; dss_max = dss_base; return (false); } void chunk_dss_prefork(void) { if (have_dss) malloc_mutex_prefork(&dss_mtx); } void chunk_dss_postfork_parent(void) { if (have_dss) malloc_mutex_postfork_parent(&dss_mtx); } void chunk_dss_postfork_child(void) { if (have_dss) malloc_mutex_postfork_child(&dss_mtx); } /******************************************************************************/