/* * This radix tree implementation is tailored to the singular purpose of * associating metadata with chunks that are currently owned by jemalloc. * ******************************************************************************* */ #ifdef JEMALLOC_H_TYPES typedef struct rtree_elm_s rtree_elm_t; typedef struct rtree_level_s rtree_level_t; typedef struct rtree_s rtree_t; /* * RTREE_BITS_PER_LEVEL must be a power of two that is no larger than the * machine address width. */ #define LG_RTREE_BITS_PER_LEVEL 4 #define RTREE_BITS_PER_LEVEL (1U << LG_RTREE_BITS_PER_LEVEL) /* Maximum rtree height. */ #define RTREE_HEIGHT_MAX \ ((1U << (LG_SIZEOF_PTR+3)) / RTREE_BITS_PER_LEVEL) /* Used for two-stage lock-free node initialization. */ #define RTREE_NODE_INITIALIZING ((rtree_elm_t *)0x1) #endif /* JEMALLOC_H_TYPES */ /******************************************************************************/ #ifdef JEMALLOC_H_STRUCTS struct rtree_elm_s { union { void *pun; rtree_elm_t *child; extent_t *extent; }; }; struct rtree_level_s { /* * A non-NULL subtree points to a subtree rooted along the hypothetical * path to the leaf node corresponding to key 0. Depending on what keys * have been used to store to the tree, an arbitrary combination of * subtree pointers may remain NULL. * * Suppose keys comprise 48 bits, and LG_RTREE_BITS_PER_LEVEL is 4. * This results in a 3-level tree, and the leftmost leaf can be directly * accessed via subtrees[2], the subtree prefixed by 0x0000 (excluding * 0x00000000) can be accessed via subtrees[1], and the remainder of the * tree can be accessed via subtrees[0]. * * levels[0] : [ | 0x0001******** | 0x0002******** | ...] * * levels[1] : [ | 0x00000001**** | 0x00000002**** | ... ] * * levels[2] : [extent(0x000000000000) | extent(0x000000000001) | ...] * * This has practical implications on x64, which currently uses only the * lower 47 bits of virtual address space in userland, thus leaving * subtrees[0] unused and avoiding a level of tree traversal. */ union { void *subtree_pun; rtree_elm_t *subtree; }; /* Number of key bits distinguished by this level. */ unsigned bits; /* * Cumulative number of key bits distinguished by traversing to * corresponding tree level. */ unsigned cumbits; }; struct rtree_s { unsigned height; /* * Precomputed table used to convert from the number of leading 0 key * bits to which subtree level to start at. */ unsigned start_level[RTREE_HEIGHT_MAX]; rtree_level_t levels[RTREE_HEIGHT_MAX]; }; #endif /* JEMALLOC_H_STRUCTS */ /******************************************************************************/ #ifdef JEMALLOC_H_EXTERNS bool rtree_new(rtree_t *rtree, unsigned bits); #ifdef JEMALLOC_JET typedef rtree_elm_t *(rtree_node_alloc_t)(tsdn_t *, rtree_t *, size_t); extern rtree_node_alloc_t *rtree_node_alloc; typedef void (rtree_node_dalloc_t)(tsdn_t *, rtree_t *, rtree_elm_t *); extern rtree_node_dalloc_t *rtree_node_dalloc; void rtree_delete(tsdn_t *tsdn, rtree_t *rtree); #endif rtree_elm_t *rtree_subtree_read_hard(tsdn_t *tsdn, rtree_t *rtree, unsigned level); rtree_elm_t *rtree_child_read_hard(tsdn_t *tsdn, rtree_t *rtree, rtree_elm_t *elm, unsigned level); #endif /* JEMALLOC_H_EXTERNS */ /******************************************************************************/ #ifdef JEMALLOC_H_INLINES #ifndef JEMALLOC_ENABLE_INLINE unsigned rtree_start_level(rtree_t *rtree, uintptr_t key); uintptr_t rtree_subkey(rtree_t *rtree, uintptr_t key, unsigned level); bool rtree_node_valid(rtree_elm_t *node); rtree_elm_t *rtree_child_tryread(rtree_elm_t *elm, bool dependent); rtree_elm_t *rtree_child_read(tsdn_t *tsdn, rtree_t *rtree, rtree_elm_t *elm, unsigned level, bool dependent); extent_t *rtree_elm_read(rtree_elm_t *elm, bool dependent); void rtree_elm_write(rtree_elm_t *elm, const extent_t *extent); rtree_elm_t *rtree_subtree_tryread(rtree_t *rtree, unsigned level, bool dependent); rtree_elm_t *rtree_subtree_read(tsdn_t *tsdn, rtree_t *rtree, unsigned level, bool dependent); rtree_elm_t *rtree_elm_lookup(tsdn_t *tsdn, rtree_t *rtree, uintptr_t key, bool dependent, bool init_missing); bool rtree_write(tsdn_t *tsdn, rtree_t *rtree, uintptr_t key, const extent_t *extent); extent_t *rtree_read(tsdn_t *tsdn, rtree_t *rtree, uintptr_t key, bool dependent); rtree_elm_t *rtree_elm_acquire(tsdn_t *tsdn, rtree_t *rtree, uintptr_t key, bool dependent, bool init_missing); extent_t *rtree_elm_read_acquired(rtree_elm_t *elm); void rtree_elm_write_acquired(rtree_elm_t *elm, const extent_t *extent); void rtree_elm_release(rtree_elm_t *elm); void rtree_clear(tsdn_t *tsdn, rtree_t *rtree, uintptr_t key); #endif #if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_RTREE_C_)) JEMALLOC_ALWAYS_INLINE unsigned rtree_start_level(rtree_t *rtree, uintptr_t key) { unsigned start_level; if (unlikely(key == 0)) return (rtree->height - 1); start_level = rtree->start_level[lg_floor(key) >> LG_RTREE_BITS_PER_LEVEL]; assert(start_level < rtree->height); return (start_level); } JEMALLOC_ALWAYS_INLINE uintptr_t rtree_subkey(rtree_t *rtree, uintptr_t key, unsigned level) { return ((key >> ((ZU(1) << (LG_SIZEOF_PTR+3)) - rtree->levels[level].cumbits)) & ((ZU(1) << rtree->levels[level].bits) - 1)); } JEMALLOC_ALWAYS_INLINE bool rtree_node_valid(rtree_elm_t *node) { return ((uintptr_t)node > (uintptr_t)RTREE_NODE_INITIALIZING); } JEMALLOC_ALWAYS_INLINE rtree_elm_t * rtree_child_tryread(rtree_elm_t *elm, bool dependent) { rtree_elm_t *child; /* Double-checked read (first read may be stale). */ child = elm->child; if (!dependent && !rtree_node_valid(child)) child = atomic_read_p(&elm->pun); assert(!dependent || child != NULL); return (child); } JEMALLOC_ALWAYS_INLINE rtree_elm_t * rtree_child_read(tsdn_t *tsdn, rtree_t *rtree, rtree_elm_t *elm, unsigned level, bool dependent) { rtree_elm_t *child; child = rtree_child_tryread(elm, dependent); if (!dependent && unlikely(!rtree_node_valid(child))) child = rtree_child_read_hard(tsdn, rtree, elm, level); assert(!dependent || child != NULL); return (child); } JEMALLOC_ALWAYS_INLINE extent_t * rtree_elm_read(rtree_elm_t *elm, bool dependent) { extent_t *extent; if (dependent) { /* * Reading a value on behalf of a pointer to a valid allocation * is guaranteed to be a clean read even without * synchronization, because the rtree update became visible in * memory before the pointer came into existence. */ extent = elm->extent; } else { /* * An arbitrary read, e.g. on behalf of ivsalloc(), may not be * dependent on a previous rtree write, which means a stale read * could result if synchronization were omitted here. */ extent = (extent_t *)atomic_read_p(&elm->pun); } /* Mask the lock bit. */ extent = (extent_t *)((uintptr_t)extent & ~((uintptr_t)0x1)); return (extent); } JEMALLOC_INLINE void rtree_elm_write(rtree_elm_t *elm, const extent_t *extent) { atomic_write_p(&elm->pun, extent); } JEMALLOC_ALWAYS_INLINE rtree_elm_t * rtree_subtree_tryread(rtree_t *rtree, unsigned level, bool dependent) { rtree_elm_t *subtree; /* Double-checked read (first read may be stale). */ subtree = rtree->levels[level].subtree; if (!dependent && unlikely(!rtree_node_valid(subtree))) subtree = atomic_read_p(&rtree->levels[level].subtree_pun); assert(!dependent || subtree != NULL); return (subtree); } JEMALLOC_ALWAYS_INLINE rtree_elm_t * rtree_subtree_read(tsdn_t *tsdn, rtree_t *rtree, unsigned level, bool dependent) { rtree_elm_t *subtree; subtree = rtree_subtree_tryread(rtree, level, dependent); if (!dependent && unlikely(!rtree_node_valid(subtree))) subtree = rtree_subtree_read_hard(tsdn, rtree, level); assert(!dependent || subtree != NULL); return (subtree); } JEMALLOC_ALWAYS_INLINE rtree_elm_t * rtree_elm_lookup(tsdn_t *tsdn, rtree_t *rtree, uintptr_t key, bool dependent, bool init_missing) { uintptr_t subkey; unsigned start_level; rtree_elm_t *node; assert(!dependent || !init_missing); start_level = rtree_start_level(rtree, key); node = init_missing ? rtree_subtree_read(tsdn, rtree, start_level, dependent) : rtree_subtree_tryread(rtree, start_level, dependent); #define RTREE_GET_BIAS (RTREE_HEIGHT_MAX - rtree->height) switch (start_level + RTREE_GET_BIAS) { #define RTREE_GET_SUBTREE(level) \ case level: \ assert(level < (RTREE_HEIGHT_MAX-1)); \ if (!dependent && unlikely(!rtree_node_valid(node))) \ return (NULL); \ subkey = rtree_subkey(rtree, key, level - \ RTREE_GET_BIAS); \ node = init_missing ? rtree_child_read(tsdn, rtree, \ &node[subkey], level - RTREE_GET_BIAS, dependent) : \ rtree_child_tryread(&node[subkey], dependent); \ /* Fall through. */ #define RTREE_GET_LEAF(level) \ case level: \ assert(level == (RTREE_HEIGHT_MAX-1)); \ if (!dependent && unlikely(!rtree_node_valid(node))) \ return (NULL); \ subkey = rtree_subkey(rtree, key, level - \ RTREE_GET_BIAS); \ /* \ * node is a leaf, so it contains values rather than \ * child pointers. \ */ \ return (&node[subkey]); #if RTREE_HEIGHT_MAX > 1 RTREE_GET_SUBTREE(0) #endif #if RTREE_HEIGHT_MAX > 2 RTREE_GET_SUBTREE(1) #endif #if RTREE_HEIGHT_MAX > 3 RTREE_GET_SUBTREE(2) #endif #if RTREE_HEIGHT_MAX > 4 RTREE_GET_SUBTREE(3) #endif #if RTREE_HEIGHT_MAX > 5 RTREE_GET_SUBTREE(4) #endif #if RTREE_HEIGHT_MAX > 6 RTREE_GET_SUBTREE(5) #endif #if RTREE_HEIGHT_MAX > 7 RTREE_GET_SUBTREE(6) #endif #if RTREE_HEIGHT_MAX > 8 RTREE_GET_SUBTREE(7) #endif #if RTREE_HEIGHT_MAX > 9 RTREE_GET_SUBTREE(8) #endif #if RTREE_HEIGHT_MAX > 10 RTREE_GET_SUBTREE(9) #endif #if RTREE_HEIGHT_MAX > 11 RTREE_GET_SUBTREE(10) #endif #if RTREE_HEIGHT_MAX > 12 RTREE_GET_SUBTREE(11) #endif #if RTREE_HEIGHT_MAX > 13 RTREE_GET_SUBTREE(12) #endif #if RTREE_HEIGHT_MAX > 14 RTREE_GET_SUBTREE(13) #endif #if RTREE_HEIGHT_MAX > 15 RTREE_GET_SUBTREE(14) #endif #if RTREE_HEIGHT_MAX > 16 # error Unsupported RTREE_HEIGHT_MAX #endif RTREE_GET_LEAF(RTREE_HEIGHT_MAX-1) #undef RTREE_GET_SUBTREE #undef RTREE_GET_LEAF default: not_reached(); } #undef RTREE_GET_BIAS not_reached(); } JEMALLOC_INLINE bool rtree_write(tsdn_t *tsdn, rtree_t *rtree, uintptr_t key, const extent_t *extent) { rtree_elm_t *elm; assert(extent != NULL); /* Use rtree_clear() for this case. */ assert(((uintptr_t)extent & (uintptr_t)0x1) == (uintptr_t)0x0); elm = rtree_elm_lookup(tsdn, rtree, key, false, true); if (elm == NULL) return (true); assert(rtree_elm_read(elm, false) == NULL); rtree_elm_write(elm, extent); return (false); } JEMALLOC_ALWAYS_INLINE extent_t * rtree_read(tsdn_t *tsdn, rtree_t *rtree, uintptr_t key, bool dependent) { rtree_elm_t *elm; elm = rtree_elm_lookup(tsdn, rtree, key, dependent, false); if (elm == NULL) return (NULL); return (rtree_elm_read(elm, dependent)); } JEMALLOC_INLINE rtree_elm_t * rtree_elm_acquire(tsdn_t *tsdn, rtree_t *rtree, uintptr_t key, bool dependent, bool init_missing) { rtree_elm_t *elm; elm = rtree_elm_lookup(tsdn, rtree, key, dependent, init_missing); if (!dependent && elm == NULL) return (NULL); { extent_t *extent; void *s; do { extent = rtree_elm_read(elm, false); /* The least significant bit serves as a lock. */ s = (void *)((uintptr_t)extent | (uintptr_t)0x1); } while (atomic_cas_p(&elm->pun, (void *)extent, s)); } return (elm); } JEMALLOC_INLINE extent_t * rtree_elm_read_acquired(rtree_elm_t *elm) { extent_t *extent; assert(((uintptr_t)elm->pun & (uintptr_t)0x1) == (uintptr_t)0x1); extent = (extent_t *)((uintptr_t)elm->pun & ~((uintptr_t)0x1)); assert(((uintptr_t)extent & (uintptr_t)0x1) == (uintptr_t)0x0); return (extent); } JEMALLOC_INLINE void rtree_elm_write_acquired(rtree_elm_t *elm, const extent_t *extent) { assert(((uintptr_t)extent & (uintptr_t)0x1) == (uintptr_t)0x0); assert(((uintptr_t)elm->pun & (uintptr_t)0x1) == (uintptr_t)0x1); elm->pun = (void *)((uintptr_t)extent | (uintptr_t)0x1); assert(rtree_elm_read_acquired(elm) == extent); } JEMALLOC_INLINE void rtree_elm_release(rtree_elm_t *elm) { rtree_elm_write(elm, rtree_elm_read_acquired(elm)); } JEMALLOC_INLINE void rtree_clear(tsdn_t *tsdn, rtree_t *rtree, uintptr_t key) { rtree_elm_t *elm; elm = rtree_elm_acquire(tsdn, rtree, key, true, false); rtree_elm_write_acquired(elm, NULL); rtree_elm_release(elm); } #endif #endif /* JEMALLOC_H_INLINES */ /******************************************************************************/