#include "jemalloc/internal/jemalloc_preamble.h" #include "jemalloc/internal/pages.h" #include "jemalloc/internal/jemalloc_internal_includes.h" #include "jemalloc/internal/assert.h" #include "jemalloc/internal/malloc_io.h" #ifdef JEMALLOC_SYSCTL_VM_OVERCOMMIT #include #ifdef __FreeBSD__ #include #endif #endif #ifdef __NetBSD__ #include /* ilog2 */ #endif #ifdef JEMALLOC_HAVE_VM_MAKE_TAG #define PAGES_FD_TAG VM_MAKE_TAG(101U) #else #define PAGES_FD_TAG -1 #endif /******************************************************************************/ /* Data. */ /* Actual operating system page size, detected during bootstrap, <= PAGE. */ static size_t os_page; #ifndef _WIN32 # define PAGES_PROT_COMMIT (PROT_READ | PROT_WRITE) # define PAGES_PROT_DECOMMIT (PROT_NONE) static int mmap_flags; #endif static bool os_overcommits; const char *thp_mode_names[] = { "default", "always", "never", "not supported" }; thp_mode_t opt_thp = THP_MODE_DEFAULT; thp_mode_t init_system_thp_mode; /* Runtime support for lazy purge. Irrelevant when !pages_can_purge_lazy. */ static bool pages_can_purge_lazy_runtime = true; #ifdef JEMALLOC_PURGE_MADVISE_DONTNEED_ZEROS static int madvise_dont_need_zeros_is_faulty = -1; /** * Check that MADV_DONTNEED will actually zero pages on subsequent access. * * Since qemu does not support this, yet [1], and you can get very tricky * assert if you will run program with jemalloc in use under qemu: * * : ../contrib/jemalloc/src/extent.c:1195: Failed assertion: "p[i] == 0" * * [1]: https://patchwork.kernel.org/patch/10576637/ */ static int madvise_MADV_DONTNEED_zeroes_pages() { int works = -1; size_t size = PAGE; void * addr = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); if (addr == MAP_FAILED) { malloc_write(": Cannot allocate memory for " "MADV_DONTNEED check\n"); if (opt_abort) { abort(); } } memset(addr, 'A', size); if (madvise(addr, size, MADV_DONTNEED) == 0) { works = memchr(addr, 'A', size) == NULL; } else { /* * If madvise() does not support MADV_DONTNEED, then we can * call it anyway, and use it's return code. */ works = 1; } if (munmap(addr, size) != 0) { malloc_write(": Cannot deallocate memory for " "MADV_DONTNEED check\n"); if (opt_abort) { abort(); } } return works; } #endif /******************************************************************************/ /* * Function prototypes for static functions that are referenced prior to * definition. */ static void os_pages_unmap(void *addr, size_t size); /******************************************************************************/ static void * os_pages_map(void *addr, size_t size, size_t alignment, bool *commit) { assert(ALIGNMENT_ADDR2BASE(addr, os_page) == addr); assert(ALIGNMENT_CEILING(size, os_page) == size); assert(size != 0); if (os_overcommits) { *commit = true; } void *ret; #ifdef _WIN32 /* * If VirtualAlloc can't allocate at the given address when one is * given, it fails and returns NULL. */ ret = VirtualAlloc(addr, size, MEM_RESERVE | (*commit ? MEM_COMMIT : 0), PAGE_READWRITE); #else /* * We don't use MAP_FIXED here, because it can cause the *replacement* * of existing mappings, and we only want to create new mappings. */ { #ifdef __NetBSD__ /* * On NetBSD PAGE for a platform is defined to the * maximum page size of all machine architectures * for that platform, so that we can use the same * binaries across all machine architectures. */ if (alignment > os_page || PAGE > os_page) { unsigned int a = ilog2(MAX(alignment, PAGE)); mmap_flags |= MAP_ALIGNED(a); } #endif int prot = *commit ? PAGES_PROT_COMMIT : PAGES_PROT_DECOMMIT; ret = mmap(addr, size, prot, mmap_flags, PAGES_FD_TAG, 0); } assert(ret != NULL); if (ret == MAP_FAILED) { ret = NULL; } else if (addr != NULL && ret != addr) { /* * We succeeded in mapping memory, but not in the right place. */ os_pages_unmap(ret, size); ret = NULL; } #endif assert(ret == NULL || (addr == NULL && ret != addr) || (addr != NULL && ret == addr)); return ret; } static void * os_pages_trim(void *addr, size_t alloc_size, size_t leadsize, size_t size, bool *commit) { void *ret = (void *)((uintptr_t)addr + leadsize); assert(alloc_size >= leadsize + size); #ifdef _WIN32 os_pages_unmap(addr, alloc_size); void *new_addr = os_pages_map(ret, size, PAGE, commit); if (new_addr == ret) { return ret; } if (new_addr != NULL) { os_pages_unmap(new_addr, size); } return NULL; #else size_t trailsize = alloc_size - leadsize - size; if (leadsize != 0) { os_pages_unmap(addr, leadsize); } if (trailsize != 0) { os_pages_unmap((void *)((uintptr_t)ret + size), trailsize); } return ret; #endif } static void os_pages_unmap(void *addr, size_t size) { assert(ALIGNMENT_ADDR2BASE(addr, os_page) == addr); assert(ALIGNMENT_CEILING(size, os_page) == size); #ifdef _WIN32 if (VirtualFree(addr, 0, MEM_RELEASE) == 0) #else if (munmap(addr, size) == -1) #endif { char buf[BUFERROR_BUF]; buferror(get_errno(), buf, sizeof(buf)); malloc_printf(": Error in " #ifdef _WIN32 "VirtualFree" #else "munmap" #endif "(): %s\n", buf); if (opt_abort) { abort(); } } } static void * pages_map_slow(size_t size, size_t alignment, bool *commit) { size_t alloc_size = size + alignment - os_page; /* Beware size_t wrap-around. */ if (alloc_size < size) { return NULL; } void *ret; do { void *pages = os_pages_map(NULL, alloc_size, alignment, commit); if (pages == NULL) { return NULL; } size_t leadsize = ALIGNMENT_CEILING((uintptr_t)pages, alignment) - (uintptr_t)pages; ret = os_pages_trim(pages, alloc_size, leadsize, size, commit); } while (ret == NULL); assert(ret != NULL); assert(PAGE_ADDR2BASE(ret) == ret); return ret; } void * pages_map(void *addr, size_t size, size_t alignment, bool *commit) { assert(alignment >= PAGE); assert(ALIGNMENT_ADDR2BASE(addr, alignment) == addr); #if defined(__FreeBSD__) && defined(MAP_EXCL) /* * FreeBSD has mechanisms both to mmap at specific address without * touching existing mappings, and to mmap with specific alignment. */ { if (os_overcommits) { *commit = true; } int prot = *commit ? PAGES_PROT_COMMIT : PAGES_PROT_DECOMMIT; int flags = mmap_flags; if (addr != NULL) { flags |= MAP_FIXED | MAP_EXCL; } else { unsigned alignment_bits = ffs_zu(alignment); assert(alignment_bits > 0); flags |= MAP_ALIGNED(alignment_bits); } void *ret = mmap(addr, size, prot, flags, -1, 0); if (ret == MAP_FAILED) { ret = NULL; } return ret; } #endif /* * Ideally, there would be a way to specify alignment to mmap() (like * NetBSD has), but in the absence of such a feature, we have to work * hard to efficiently create aligned mappings. The reliable, but * slow method is to create a mapping that is over-sized, then trim the * excess. However, that always results in one or two calls to * os_pages_unmap(), and it can leave holes in the process's virtual * memory map if memory grows downward. * * Optimistically try mapping precisely the right amount before falling * back to the slow method, with the expectation that the optimistic * approach works most of the time. */ void *ret = os_pages_map(addr, size, os_page, commit); if (ret == NULL || ret == addr) { return ret; } assert(addr == NULL); if (ALIGNMENT_ADDR2OFFSET(ret, alignment) != 0) { os_pages_unmap(ret, size); return pages_map_slow(size, alignment, commit); } assert(PAGE_ADDR2BASE(ret) == ret); return ret; } void pages_unmap(void *addr, size_t size) { assert(PAGE_ADDR2BASE(addr) == addr); assert(PAGE_CEILING(size) == size); os_pages_unmap(addr, size); } static bool pages_commit_impl(void *addr, size_t size, bool commit) { assert(PAGE_ADDR2BASE(addr) == addr); assert(PAGE_CEILING(size) == size); if (os_overcommits) { return true; } #ifdef _WIN32 return (commit ? (addr != VirtualAlloc(addr, size, MEM_COMMIT, PAGE_READWRITE)) : (!VirtualFree(addr, size, MEM_DECOMMIT))); #else { int prot = commit ? PAGES_PROT_COMMIT : PAGES_PROT_DECOMMIT; void *result = mmap(addr, size, prot, mmap_flags | MAP_FIXED, PAGES_FD_TAG, 0); if (result == MAP_FAILED) { return true; } if (result != addr) { /* * We succeeded in mapping memory, but not in the right * place. */ os_pages_unmap(result, size); return true; } return false; } #endif } bool pages_commit(void *addr, size_t size) { return pages_commit_impl(addr, size, true); } bool pages_decommit(void *addr, size_t size) { return pages_commit_impl(addr, size, false); } bool pages_purge_lazy(void *addr, size_t size) { assert(ALIGNMENT_ADDR2BASE(addr, os_page) == addr); assert(PAGE_CEILING(size) == size); if (!pages_can_purge_lazy) { return true; } if (!pages_can_purge_lazy_runtime) { /* * Built with lazy purge enabled, but detected it was not * supported on the current system. */ return true; } #ifdef _WIN32 VirtualAlloc(addr, size, MEM_RESET, PAGE_READWRITE); return false; #elif defined(JEMALLOC_PURGE_MADVISE_FREE) return (madvise(addr, size, # ifdef MADV_FREE MADV_FREE # else JEMALLOC_MADV_FREE # endif ) != 0); #elif defined(JEMALLOC_PURGE_MADVISE_DONTNEED) && \ !defined(JEMALLOC_PURGE_MADVISE_DONTNEED_ZEROS) return (madvise(addr, size, MADV_DONTNEED) != 0); #elif defined(JEMALLOC_PURGE_POSIX_MADVISE_DONTNEED) && \ !defined(JEMALLOC_PURGE_POSIX_MADVISE_DONTNEED_ZEROS) return (posix_madvise(addr, size, POSIX_MADV_DONTNEED) != 0); #else not_reached(); #endif } bool pages_purge_forced(void *addr, size_t size) { assert(PAGE_ADDR2BASE(addr) == addr); assert(PAGE_CEILING(size) == size); if (!pages_can_purge_forced) { return true; } #if defined(JEMALLOC_PURGE_MADVISE_DONTNEED) && \ defined(JEMALLOC_PURGE_MADVISE_DONTNEED_ZEROS) return (unlikely(madvise_dont_need_zeros_is_faulty) || madvise(addr, size, MADV_DONTNEED) != 0); #elif defined(JEMALLOC_PURGE_POSIX_MADVISE_DONTNEED) && \ defined(JEMALLOC_PURGE_POSIX_MADVISE_DONTNEED_ZEROS) return (unlikely(madvise_dont_need_zeros_is_faulty) || posix_madvise(addr, size, POSIX_MADV_DONTNEED) != 0); #elif defined(JEMALLOC_MAPS_COALESCE) /* Try to overlay a new demand-zeroed mapping. */ return pages_commit(addr, size); #else not_reached(); #endif } static bool pages_huge_impl(void *addr, size_t size, bool aligned) { if (aligned) { assert(HUGEPAGE_ADDR2BASE(addr) == addr); assert(HUGEPAGE_CEILING(size) == size); } #if defined(JEMALLOC_HAVE_MADVISE_HUGE) return (madvise(addr, size, MADV_HUGEPAGE) != 0); #elif defined(JEMALLOC_HAVE_MEMCNTL) struct memcntl_mha m = {0}; m.mha_cmd = MHA_MAPSIZE_VA; m.mha_pagesize = HUGEPAGE; return (memcntl(addr, size, MC_HAT_ADVISE, (caddr_t)&m, 0, 0) == 0); #else return true; #endif } bool pages_huge(void *addr, size_t size) { return pages_huge_impl(addr, size, true); } static bool pages_huge_unaligned(void *addr, size_t size) { return pages_huge_impl(addr, size, false); } static bool pages_nohuge_impl(void *addr, size_t size, bool aligned) { if (aligned) { assert(HUGEPAGE_ADDR2BASE(addr) == addr); assert(HUGEPAGE_CEILING(size) == size); } #ifdef JEMALLOC_HAVE_MADVISE_HUGE return (madvise(addr, size, MADV_NOHUGEPAGE) != 0); #else return false; #endif } bool pages_nohuge(void *addr, size_t size) { return pages_nohuge_impl(addr, size, true); } static bool pages_nohuge_unaligned(void *addr, size_t size) { return pages_nohuge_impl(addr, size, false); } bool pages_dontdump(void *addr, size_t size) { assert(PAGE_ADDR2BASE(addr) == addr); assert(PAGE_CEILING(size) == size); #if defined(JEMALLOC_MADVISE_DONTDUMP) return madvise(addr, size, MADV_DONTDUMP) != 0; #elif defined(JEMALLOC_MADVISE_NOCORE) return madvise(addr, size, MADV_NOCORE) != 0; #else return false; #endif } bool pages_dodump(void *addr, size_t size) { assert(PAGE_ADDR2BASE(addr) == addr); assert(PAGE_CEILING(size) == size); #if defined(JEMALLOC_MADVISE_DONTDUMP) return madvise(addr, size, MADV_DODUMP) != 0; #elif defined(JEMALLOC_MADVISE_NOCORE) return madvise(addr, size, MADV_CORE) != 0; #else return false; #endif } static size_t os_page_detect(void) { #ifdef _WIN32 SYSTEM_INFO si; GetSystemInfo(&si); return si.dwPageSize; #elif defined(__FreeBSD__) /* * This returns the value obtained from * the auxv vector, avoiding a syscall. */ return getpagesize(); #else long result = sysconf(_SC_PAGESIZE); if (result == -1) { return LG_PAGE; } return (size_t)result; #endif } #ifdef JEMALLOC_SYSCTL_VM_OVERCOMMIT static bool os_overcommits_sysctl(void) { int vm_overcommit; size_t sz; sz = sizeof(vm_overcommit); #if defined(__FreeBSD__) && defined(VM_OVERCOMMIT) int mib[2]; mib[0] = CTL_VM; mib[1] = VM_OVERCOMMIT; if (sysctl(mib, 2, &vm_overcommit, &sz, NULL, 0) != 0) { return false; /* Error. */ } #else if (sysctlbyname("vm.overcommit", &vm_overcommit, &sz, NULL, 0) != 0) { return false; /* Error. */ } #endif return ((vm_overcommit & 0x3) == 0); } #endif #ifdef JEMALLOC_PROC_SYS_VM_OVERCOMMIT_MEMORY /* * Use syscall(2) rather than {open,read,close}(2) when possible to avoid * reentry during bootstrapping if another library has interposed system call * wrappers. */ static bool os_overcommits_proc(void) { int fd; char buf[1]; #if defined(JEMALLOC_USE_SYSCALL) && defined(SYS_open) #if defined(O_CLOEXEC) fd = (int)syscall(SYS_open, "/proc/sys/vm/overcommit_memory", O_RDONLY | O_CLOEXEC); #else fd = (int)syscall(SYS_open, "/proc/sys/vm/overcommit_memory", O_RDONLY); if (fd != -1) { fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC); } #endif #elif defined(JEMALLOC_USE_SYSCALL) && defined(SYS_openat) #if defined(O_CLOEXEC) fd = (int)syscall(SYS_openat, AT_FDCWD, "/proc/sys/vm/overcommit_memory", O_RDONLY | O_CLOEXEC); #else fd = (int)syscall(SYS_openat, AT_FDCWD, "/proc/sys/vm/overcommit_memory", O_RDONLY); if (fd != -1) { fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC); } #endif #else #if defined(O_CLOEXEC) fd = open("/proc/sys/vm/overcommit_memory", O_RDONLY | O_CLOEXEC); #else fd = open("/proc/sys/vm/overcommit_memory", O_RDONLY); if (fd != -1) { fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC); } #endif #endif if (fd == -1) { return false; /* Error. */ } ssize_t nread = malloc_read_fd(fd, &buf, sizeof(buf)); #if defined(JEMALLOC_USE_SYSCALL) && defined(SYS_close) syscall(SYS_close, fd); #else close(fd); #endif if (nread < 1) { return false; /* Error. */ } /* * /proc/sys/vm/overcommit_memory meanings: * 0: Heuristic overcommit. * 1: Always overcommit. * 2: Never overcommit. */ return (buf[0] == '0' || buf[0] == '1'); } #endif void pages_set_thp_state (void *ptr, size_t size) { if (opt_thp == thp_mode_default || opt_thp == init_system_thp_mode) { return; } assert(opt_thp != thp_mode_not_supported && init_system_thp_mode != thp_mode_not_supported); if (opt_thp == thp_mode_always && init_system_thp_mode != thp_mode_never) { assert(init_system_thp_mode == thp_mode_default); pages_huge_unaligned(ptr, size); } else if (opt_thp == thp_mode_never) { assert(init_system_thp_mode == thp_mode_default || init_system_thp_mode == thp_mode_always); pages_nohuge_unaligned(ptr, size); } } static void init_thp_state(void) { if (!have_madvise_huge && !have_memcntl) { if (metadata_thp_enabled() && opt_abort) { malloc_write(": no MADV_HUGEPAGE support\n"); abort(); } goto label_error; } #if defined(JEMALLOC_HAVE_MADVISE_HUGE) static const char sys_state_madvise[] = "always [madvise] never\n"; static const char sys_state_always[] = "[always] madvise never\n"; static const char sys_state_never[] = "always madvise [never]\n"; char buf[sizeof(sys_state_madvise)]; #if defined(JEMALLOC_USE_SYSCALL) && defined(SYS_open) int fd = (int)syscall(SYS_open, "/sys/kernel/mm/transparent_hugepage/enabled", O_RDONLY); #elif defined(JEMALLOC_USE_SYSCALL) && defined(SYS_openat) int fd = (int)syscall(SYS_openat, AT_FDCWD, "/sys/kernel/mm/transparent_hugepage/enabled", O_RDONLY); #else int fd = open("/sys/kernel/mm/transparent_hugepage/enabled", O_RDONLY); #endif if (fd == -1) { goto label_error; } ssize_t nread = malloc_read_fd(fd, &buf, sizeof(buf)); #if defined(JEMALLOC_USE_SYSCALL) && defined(SYS_close) syscall(SYS_close, fd); #else close(fd); #endif if (nread < 0) { goto label_error; } if (strncmp(buf, sys_state_madvise, (size_t)nread) == 0) { init_system_thp_mode = thp_mode_default; } else if (strncmp(buf, sys_state_always, (size_t)nread) == 0) { init_system_thp_mode = thp_mode_always; } else if (strncmp(buf, sys_state_never, (size_t)nread) == 0) { init_system_thp_mode = thp_mode_never; } else { goto label_error; } return; #elif defined(JEMALLOC_HAVE_MEMCNTL) init_system_thp_mode = thp_mode_default; return; #endif label_error: opt_thp = init_system_thp_mode = thp_mode_not_supported; } bool pages_boot(void) { os_page = os_page_detect(); if (os_page > PAGE) { malloc_write(": Unsupported system page size\n"); if (opt_abort) { abort(); } return true; } #ifdef JEMALLOC_PURGE_MADVISE_DONTNEED_ZEROS if (!opt_trust_madvise) { madvise_dont_need_zeros_is_faulty = !madvise_MADV_DONTNEED_zeroes_pages(); if (madvise_dont_need_zeros_is_faulty) { malloc_write(": MADV_DONTNEED does not work (memset will be used instead)\n"); malloc_write(": (This is the expected behaviour if you are running under QEMU)\n"); } } else { /* In case opt_trust_madvise is disable, * do not do runtime check */ madvise_dont_need_zeros_is_faulty = 0; } #endif #ifndef _WIN32 mmap_flags = MAP_PRIVATE | MAP_ANON; #endif #ifdef JEMALLOC_SYSCTL_VM_OVERCOMMIT os_overcommits = os_overcommits_sysctl(); #elif defined(JEMALLOC_PROC_SYS_VM_OVERCOMMIT_MEMORY) os_overcommits = os_overcommits_proc(); # ifdef MAP_NORESERVE if (os_overcommits) { mmap_flags |= MAP_NORESERVE; } # endif #elif defined(__NetBSD__) os_overcommits = true; #else os_overcommits = false; #endif init_thp_state(); #ifdef __FreeBSD__ /* * FreeBSD doesn't need the check; madvise(2) is known to work. */ #else /* Detect lazy purge runtime support. */ if (pages_can_purge_lazy) { bool committed = false; void *madv_free_page = os_pages_map(NULL, PAGE, PAGE, &committed); if (madv_free_page == NULL) { return true; } assert(pages_can_purge_lazy_runtime); if (pages_purge_lazy(madv_free_page, PAGE)) { pages_can_purge_lazy_runtime = false; } os_pages_unmap(madv_free_page, PAGE); } #endif return false; }