/******************************************************************************/ #ifdef JEMALLOC_H_TYPES #define LARGE_MINCLASS (ZU(1) << LG_LARGE_MINCLASS) /* Maximum number of regions in one slab. */ #define LG_SLAB_MAXREGS (LG_PAGE - LG_TINY_MIN) #define SLAB_MAXREGS (1U << LG_SLAB_MAXREGS) /* Default decay time in seconds. */ #define DECAY_TIME_DEFAULT 10 /* Number of event ticks between time checks. */ #define DECAY_NTICKS_PER_UPDATE 1000 typedef struct arena_slab_data_s arena_slab_data_t; typedef struct arena_bin_info_s arena_bin_info_t; typedef struct arena_decay_s arena_decay_t; typedef struct arena_bin_s arena_bin_t; typedef struct arena_s arena_t; typedef struct arena_tdata_s arena_tdata_t; #endif /* JEMALLOC_H_TYPES */ /******************************************************************************/ #ifdef JEMALLOC_H_STRUCTS #ifdef JEMALLOC_ARENA_STRUCTS_A struct arena_slab_data_s { /* Index of bin this slab is associated with. */ szind_t binind; /* Number of free regions in slab. */ unsigned nfree; /* Per region allocated/deallocated bitmap. */ bitmap_t bitmap[BITMAP_GROUPS_MAX]; }; #endif /* JEMALLOC_ARENA_STRUCTS_A */ #ifdef JEMALLOC_ARENA_STRUCTS_B /* * Read-only information associated with each element of arena_t's bins array * is stored separately, partly to reduce memory usage (only one copy, rather * than one per arena), but mainly to avoid false cacheline sharing. * * Each slab has the following layout: * * /--------------------\ * | region 0 | * |--------------------| * | region 1 | * |--------------------| * | ... | * | ... | * | ... | * |--------------------| * | region nregs-1 | * \--------------------/ */ struct arena_bin_info_s { /* Size of regions in a slab for this bin's size class. */ size_t reg_size; /* Total size of a slab for this bin's size class. */ size_t slab_size; /* Total number of regions in a slab for this bin's size class. */ uint32_t nregs; /* * Metadata used to manipulate bitmaps for slabs associated with this * bin. */ bitmap_info_t bitmap_info; }; struct arena_decay_s { /* * Approximate time in seconds from the creation of a set of unused * dirty pages until an equivalent set of unused dirty pages is purged * and/or reused. */ ssize_t time; /* time / SMOOTHSTEP_NSTEPS. */ nstime_t interval; /* * Time at which the current decay interval logically started. We do * not actually advance to a new epoch until sometime after it starts * because of scheduling and computation delays, and it is even possible * to completely skip epochs. In all cases, during epoch advancement we * merge all relevant activity into the most recently recorded epoch. */ nstime_t epoch; /* Deadline randomness generator. */ uint64_t jitter_state; /* * Deadline for current epoch. This is the sum of interval and per * epoch jitter which is a uniform random variable in [0..interval). * Epochs always advance by precise multiples of interval, but we * randomize the deadline to reduce the likelihood of arenas purging in * lockstep. */ nstime_t deadline; /* * Number of dirty pages at beginning of current epoch. During epoch * advancement we use the delta between arena->decay.ndirty and * arena->ndirty to determine how many dirty pages, if any, were * generated. */ size_t ndirty; /* * Trailing log of how many unused dirty pages were generated during * each of the past SMOOTHSTEP_NSTEPS decay epochs, where the last * element is the most recent epoch. Corresponding epoch times are * relative to epoch. */ size_t backlog[SMOOTHSTEP_NSTEPS]; }; struct arena_bin_s { /* All operations on arena_bin_t fields require lock ownership. */ malloc_mutex_t lock; /* * Current slab being used to service allocations of this bin's size * class. slabcur is independent of slabs_{nonfull,full}; whenever * slabcur is reassigned, the previous slab must be deallocated or * inserted into slabs_{nonfull,full}. */ extent_t *slabcur; /* * Heap of non-full slabs. This heap is used to assure that new * allocations come from the non-full slab that is lowest in memory. */ extent_heap_t slabs_nonfull; /* Ring sentinel used to track full slabs. */ extent_t slabs_full; /* Bin statistics. */ malloc_bin_stats_t stats; }; struct arena_s { /* This arena's index within the arenas array. */ unsigned ind; /* * Number of threads currently assigned to this arena, synchronized via * atomic operations. Each thread has two distinct assignments, one for * application-serving allocation, and the other for internal metadata * allocation. Internal metadata must not be allocated from arenas * created via the arenas.extend mallctl, because the arena..reset * mallctl indiscriminately discards all allocations for the affected * arena. * * 0: Application allocation. * 1: Internal metadata allocation. */ unsigned nthreads[2]; /* * There are three classes of arena operations from a locking * perspective: * 1) Thread assignment (modifies nthreads) is synchronized via atomics. * 2) Bin-related operations are protected by bin locks. * 3) Chunk-related operations are protected by this mutex. */ malloc_mutex_t lock; arena_stats_t stats; /* * List of tcaches for extant threads associated with this arena. * Stats from these are merged incrementally, and at exit if * opt_stats_print is enabled. */ ql_head(tcache_t) tcache_ql; uint64_t prof_accumbytes; /* * PRNG state for cache index randomization of large allocation base * pointers. */ uint64_t offset_state; dss_prec_t dss_prec; /* True if a thread is currently executing arena_purge_to_limit(). */ bool purging; /* Number of pages in active extents. */ size_t nactive; /* * Current count of pages within unused extents that are potentially * dirty, and for which madvise(... MADV_DONTNEED) has not been called. * By tracking this, we can institute a limit on how much dirty unused * memory is mapped for each arena. */ size_t ndirty; /* Decay-based purging state. */ arena_decay_t decay; /* Extant large allocations. */ ql_head(extent_t) large; /* Synchronizes all large allocation/update/deallocation. */ malloc_mutex_t large_mtx; /* * Heaps of extents that were previously allocated. These are used when * allocating extents, in an attempt to re-use address space. */ extent_heap_t extents_cached[NPSIZES]; extent_heap_t extents_retained[NPSIZES]; /* * Ring sentinel used to track unused dirty memory. Dirty memory is * managed as an LRU of cached extents. */ extent_t extents_dirty; /* Protects extents_{cached,retained,dirty}. */ malloc_mutex_t extents_mtx; /* User-configurable extent hook functions. */ union { extent_hooks_t *extent_hooks; void *extent_hooks_pun; }; /* Cache of extent structures that were allocated via base_alloc(). */ ql_head(extent_t) extent_cache; malloc_mutex_t extent_cache_mtx; /* bins is used to store heaps of free regions. */ arena_bin_t bins[NBINS]; }; /* Used in conjunction with tsd for fast arena-related context lookup. */ struct arena_tdata_s { ticker_t decay_ticker; }; #endif /* JEMALLOC_ARENA_STRUCTS_B */ #endif /* JEMALLOC_H_STRUCTS */ /******************************************************************************/ #ifdef JEMALLOC_H_EXTERNS static const size_t large_pad = #ifdef JEMALLOC_CACHE_OBLIVIOUS PAGE #else 0 #endif ; extern ssize_t opt_decay_time; extern const arena_bin_info_t arena_bin_info[NBINS]; extent_t *arena_extent_cache_alloc(tsdn_t *tsdn, arena_t *arena, extent_hooks_t **r_extent_hooks, void *new_addr, size_t size, size_t alignment, bool *zero); void arena_extent_cache_dalloc(tsdn_t *tsdn, arena_t *arena, extent_hooks_t **r_extent_hooks, extent_t *extent); void arena_extent_cache_maybe_insert(tsdn_t *tsdn, arena_t *arena, extent_t *extent, bool cache); void arena_extent_cache_maybe_remove(tsdn_t *tsdn, arena_t *arena, extent_t *extent, bool cache); extent_t *arena_extent_alloc_large(tsdn_t *tsdn, arena_t *arena, size_t usize, size_t alignment, bool *zero); void arena_extent_dalloc_large(tsdn_t *tsdn, arena_t *arena, extent_t *extent, bool locked); void arena_extent_ralloc_large_shrink(tsdn_t *tsdn, arena_t *arena, extent_t *extent, size_t oldsize); void arena_extent_ralloc_large_expand(tsdn_t *tsdn, arena_t *arena, extent_t *extent, size_t oldsize); ssize_t arena_decay_time_get(tsdn_t *tsdn, arena_t *arena); bool arena_decay_time_set(tsdn_t *tsdn, arena_t *arena, ssize_t decay_time); void arena_purge(tsdn_t *tsdn, arena_t *arena, bool all); void arena_maybe_purge(tsdn_t *tsdn, arena_t *arena); void arena_reset(tsd_t *tsd, arena_t *arena); void arena_tcache_fill_small(tsdn_t *tsdn, arena_t *arena, tcache_bin_t *tbin, szind_t binind, uint64_t prof_accumbytes); void arena_alloc_junk_small(void *ptr, const arena_bin_info_t *bin_info, bool zero); #ifdef JEMALLOC_JET typedef void (arena_dalloc_junk_small_t)(void *, const arena_bin_info_t *); extern arena_dalloc_junk_small_t *arena_dalloc_junk_small; #else void arena_dalloc_junk_small(void *ptr, const arena_bin_info_t *bin_info); #endif void *arena_malloc_hard(tsdn_t *tsdn, arena_t *arena, size_t size, szind_t ind, bool zero); void *arena_palloc(tsdn_t *tsdn, arena_t *arena, size_t usize, size_t alignment, bool zero, tcache_t *tcache); void arena_prof_promote(tsdn_t *tsdn, extent_t *extent, const void *ptr, size_t usize); void arena_dalloc_promoted(tsdn_t *tsdn, extent_t *extent, void *ptr, tcache_t *tcache, bool slow_path); void arena_dalloc_bin_junked_locked(tsdn_t *tsdn, arena_t *arena, extent_t *extent, void *ptr); void arena_dalloc_small(tsdn_t *tsdn, arena_t *arena, extent_t *extent, void *ptr); bool arena_ralloc_no_move(tsdn_t *tsdn, extent_t *extent, void *ptr, size_t oldsize, size_t size, size_t extra, bool zero); void *arena_ralloc(tsdn_t *tsdn, arena_t *arena, extent_t *extent, void *ptr, size_t oldsize, size_t size, size_t alignment, bool zero, tcache_t *tcache); dss_prec_t arena_dss_prec_get(tsdn_t *tsdn, arena_t *arena); bool arena_dss_prec_set(tsdn_t *tsdn, arena_t *arena, dss_prec_t dss_prec); ssize_t arena_decay_time_default_get(void); bool arena_decay_time_default_set(ssize_t decay_time); void arena_basic_stats_merge(tsdn_t *tsdn, arena_t *arena, unsigned *nthreads, const char **dss, ssize_t *decay_time, size_t *nactive, size_t *ndirty); void arena_stats_merge(tsdn_t *tsdn, arena_t *arena, unsigned *nthreads, const char **dss, ssize_t *decay_time, size_t *nactive, size_t *ndirty, arena_stats_t *astats, malloc_bin_stats_t *bstats, malloc_large_stats_t *lstats); unsigned arena_nthreads_get(arena_t *arena, bool internal); void arena_nthreads_inc(arena_t *arena, bool internal); void arena_nthreads_dec(arena_t *arena, bool internal); arena_t *arena_new(tsdn_t *tsdn, unsigned ind); void arena_boot(void); void arena_prefork0(tsdn_t *tsdn, arena_t *arena); void arena_prefork1(tsdn_t *tsdn, arena_t *arena); void arena_prefork2(tsdn_t *tsdn, arena_t *arena); void arena_prefork3(tsdn_t *tsdn, arena_t *arena); void arena_postfork_parent(tsdn_t *tsdn, arena_t *arena); void arena_postfork_child(tsdn_t *tsdn, arena_t *arena); #endif /* JEMALLOC_H_EXTERNS */ /******************************************************************************/ #ifdef JEMALLOC_H_INLINES #ifndef JEMALLOC_ENABLE_INLINE void arena_metadata_add(arena_t *arena, size_t size); void arena_metadata_sub(arena_t *arena, size_t size); size_t arena_metadata_get(arena_t *arena); bool arena_prof_accum_impl(arena_t *arena, uint64_t accumbytes); bool arena_prof_accum_locked(arena_t *arena, uint64_t accumbytes); bool arena_prof_accum(tsdn_t *tsdn, arena_t *arena, uint64_t accumbytes); szind_t arena_bin_index(arena_t *arena, arena_bin_t *bin); prof_tctx_t *arena_prof_tctx_get(tsdn_t *tsdn, const extent_t *extent, const void *ptr); void arena_prof_tctx_set(tsdn_t *tsdn, extent_t *extent, const void *ptr, size_t usize, prof_tctx_t *tctx); void arena_prof_tctx_reset(tsdn_t *tsdn, extent_t *extent, const void *ptr, prof_tctx_t *tctx); void arena_decay_ticks(tsdn_t *tsdn, arena_t *arena, unsigned nticks); void arena_decay_tick(tsdn_t *tsdn, arena_t *arena); void *arena_malloc(tsdn_t *tsdn, arena_t *arena, size_t size, szind_t ind, bool zero, tcache_t *tcache, bool slow_path); arena_t *arena_aalloc(tsdn_t *tsdn, const void *ptr); size_t arena_salloc(tsdn_t *tsdn, const extent_t *extent, const void *ptr); void arena_dalloc(tsdn_t *tsdn, extent_t *extent, void *ptr, tcache_t *tcache, bool slow_path); void arena_sdalloc(tsdn_t *tsdn, extent_t *extent, void *ptr, size_t size, tcache_t *tcache, bool slow_path); #endif #if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_ARENA_C_)) # ifdef JEMALLOC_ARENA_INLINE_A JEMALLOC_INLINE void arena_metadata_add(arena_t *arena, size_t size) { atomic_add_z(&arena->stats.metadata, size); } JEMALLOC_INLINE void arena_metadata_sub(arena_t *arena, size_t size) { atomic_sub_z(&arena->stats.metadata, size); } JEMALLOC_INLINE size_t arena_metadata_get(arena_t *arena) { return (atomic_read_z(&arena->stats.metadata)); } JEMALLOC_INLINE bool arena_prof_accum_impl(arena_t *arena, uint64_t accumbytes) { cassert(config_prof); assert(prof_interval != 0); arena->prof_accumbytes += accumbytes; if (arena->prof_accumbytes >= prof_interval) { arena->prof_accumbytes %= prof_interval; return (true); } return (false); } JEMALLOC_INLINE bool arena_prof_accum_locked(arena_t *arena, uint64_t accumbytes) { cassert(config_prof); if (likely(prof_interval == 0)) return (false); return (arena_prof_accum_impl(arena, accumbytes)); } JEMALLOC_INLINE bool arena_prof_accum(tsdn_t *tsdn, arena_t *arena, uint64_t accumbytes) { cassert(config_prof); if (likely(prof_interval == 0)) return (false); { bool ret; malloc_mutex_lock(tsdn, &arena->lock); ret = arena_prof_accum_impl(arena, accumbytes); malloc_mutex_unlock(tsdn, &arena->lock); return (ret); } } # endif /* JEMALLOC_ARENA_INLINE_A */ # ifdef JEMALLOC_ARENA_INLINE_B JEMALLOC_INLINE szind_t arena_bin_index(arena_t *arena, arena_bin_t *bin) { szind_t binind = (szind_t)(bin - arena->bins); assert(binind < NBINS); return (binind); } JEMALLOC_INLINE prof_tctx_t * arena_prof_tctx_get(tsdn_t *tsdn, const extent_t *extent, const void *ptr) { cassert(config_prof); assert(ptr != NULL); if (unlikely(!extent_slab_get(extent))) return (large_prof_tctx_get(tsdn, extent)); return ((prof_tctx_t *)(uintptr_t)1U); } JEMALLOC_INLINE void arena_prof_tctx_set(tsdn_t *tsdn, extent_t *extent, const void *ptr, size_t usize, prof_tctx_t *tctx) { cassert(config_prof); assert(ptr != NULL); if (unlikely(!extent_slab_get(extent))) large_prof_tctx_set(tsdn, extent, tctx); } JEMALLOC_INLINE void arena_prof_tctx_reset(tsdn_t *tsdn, extent_t *extent, const void *ptr, prof_tctx_t *tctx) { cassert(config_prof); assert(ptr != NULL); assert(!extent_slab_get(extent)); large_prof_tctx_reset(tsdn, extent); } JEMALLOC_ALWAYS_INLINE void arena_decay_ticks(tsdn_t *tsdn, arena_t *arena, unsigned nticks) { tsd_t *tsd; ticker_t *decay_ticker; if (unlikely(tsdn_null(tsdn))) return; tsd = tsdn_tsd(tsdn); decay_ticker = decay_ticker_get(tsd, arena->ind); if (unlikely(decay_ticker == NULL)) return; if (unlikely(ticker_ticks(decay_ticker, nticks))) arena_purge(tsdn, arena, false); } JEMALLOC_ALWAYS_INLINE void arena_decay_tick(tsdn_t *tsdn, arena_t *arena) { malloc_mutex_assert_not_owner(tsdn, &arena->lock); arena_decay_ticks(tsdn, arena, 1); } JEMALLOC_ALWAYS_INLINE void * arena_malloc(tsdn_t *tsdn, arena_t *arena, size_t size, szind_t ind, bool zero, tcache_t *tcache, bool slow_path) { assert(!tsdn_null(tsdn) || tcache == NULL); assert(size != 0); if (likely(tcache != NULL)) { if (likely(size <= SMALL_MAXCLASS)) { return (tcache_alloc_small(tsdn_tsd(tsdn), arena, tcache, size, ind, zero, slow_path)); } if (likely(size <= tcache_maxclass)) { return (tcache_alloc_large(tsdn_tsd(tsdn), arena, tcache, size, ind, zero, slow_path)); } /* (size > tcache_maxclass) case falls through. */ assert(size > tcache_maxclass); } return (arena_malloc_hard(tsdn, arena, size, ind, zero)); } JEMALLOC_ALWAYS_INLINE arena_t * arena_aalloc(tsdn_t *tsdn, const void *ptr) { return (extent_arena_get(iealloc(tsdn, ptr))); } /* Return the size of the allocation pointed to by ptr. */ JEMALLOC_ALWAYS_INLINE size_t arena_salloc(tsdn_t *tsdn, const extent_t *extent, const void *ptr) { size_t ret; assert(ptr != NULL); if (likely(extent_slab_get(extent))) ret = index2size(extent_slab_data_get_const(extent)->binind); else ret = large_salloc(tsdn, extent); return (ret); } JEMALLOC_ALWAYS_INLINE void arena_dalloc(tsdn_t *tsdn, extent_t *extent, void *ptr, tcache_t *tcache, bool slow_path) { assert(!tsdn_null(tsdn) || tcache == NULL); assert(ptr != NULL); if (likely(extent_slab_get(extent))) { /* Small allocation. */ if (likely(tcache != NULL)) { szind_t binind = extent_slab_data_get(extent)->binind; tcache_dalloc_small(tsdn_tsd(tsdn), tcache, ptr, binind, slow_path); } else { arena_dalloc_small(tsdn, extent_arena_get(extent), extent, ptr); } } else { size_t usize = extent_usize_get(extent); if (likely(tcache != NULL) && usize <= tcache_maxclass) { if (config_prof && unlikely(usize <= SMALL_MAXCLASS)) { arena_dalloc_promoted(tsdn, extent, ptr, tcache, slow_path); } else { tcache_dalloc_large(tsdn_tsd(tsdn), tcache, ptr, usize, slow_path); } } else large_dalloc(tsdn, extent); } } JEMALLOC_ALWAYS_INLINE void arena_sdalloc(tsdn_t *tsdn, extent_t *extent, void *ptr, size_t size, tcache_t *tcache, bool slow_path) { assert(!tsdn_null(tsdn) || tcache == NULL); assert(ptr != NULL); if (likely(extent_slab_get(extent))) { /* Small allocation. */ if (likely(tcache != NULL)) { szind_t binind = size2index(size); assert(binind == extent_slab_data_get(extent)->binind); tcache_dalloc_small(tsdn_tsd(tsdn), tcache, ptr, binind, slow_path); } else { arena_dalloc_small(tsdn, extent_arena_get(extent), extent, ptr); } } else { if (likely(tcache != NULL) && size <= tcache_maxclass) { if (config_prof && unlikely(size <= SMALL_MAXCLASS)) { arena_dalloc_promoted(tsdn, extent, ptr, tcache, slow_path); } else { tcache_dalloc_large(tsdn_tsd(tsdn), tcache, ptr, size, slow_path); } } else large_dalloc(tsdn, extent); } } # endif /* JEMALLOC_ARENA_INLINE_B */ #endif #endif /* JEMALLOC_H_INLINES */ /******************************************************************************/