#include "test/jemalloc_test.h" rtree_node_alloc_t *rtree_node_alloc_orig; rtree_node_dalloc_t *rtree_node_dalloc_orig; rtree_leaf_alloc_t *rtree_leaf_alloc_orig; rtree_leaf_dalloc_t *rtree_leaf_dalloc_orig; rtree_t *test_rtree; static rtree_node_elm_t * rtree_node_alloc_intercept(tsdn_t *tsdn, rtree_t *rtree, size_t nelms) { rtree_node_elm_t *node; if (rtree != test_rtree) { return rtree_node_alloc_orig(tsdn, rtree, nelms); } malloc_mutex_unlock(tsdn, &rtree->init_lock); node = (rtree_node_elm_t *)calloc(nelms, sizeof(rtree_node_elm_t)); assert_ptr_not_null(node, "Unexpected calloc() failure"); malloc_mutex_lock(tsdn, &rtree->init_lock); return node; } static void rtree_node_dalloc_intercept(tsdn_t *tsdn, rtree_t *rtree, rtree_node_elm_t *node) { if (rtree != test_rtree) { rtree_node_dalloc_orig(tsdn, rtree, node); return; } free(node); } static rtree_leaf_elm_t * rtree_leaf_alloc_intercept(tsdn_t *tsdn, rtree_t *rtree, size_t nelms) { rtree_leaf_elm_t *leaf; if (rtree != test_rtree) { return rtree_leaf_alloc_orig(tsdn, rtree, nelms); } malloc_mutex_unlock(tsdn, &rtree->init_lock); leaf = (rtree_leaf_elm_t *)calloc(nelms, sizeof(rtree_leaf_elm_t)); assert_ptr_not_null(leaf, "Unexpected calloc() failure"); malloc_mutex_lock(tsdn, &rtree->init_lock); return leaf; } static void rtree_leaf_dalloc_intercept(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *leaf) { if (rtree != test_rtree) { rtree_leaf_dalloc_orig(tsdn, rtree, leaf); return; } free(leaf); } TEST_BEGIN(test_rtree_read_empty) { tsdn_t *tsdn; tsdn = tsdn_fetch(); rtree_t rtree; rtree_ctx_t rtree_ctx = RTREE_CTX_INITIALIZER; test_rtree = &rtree; assert_false(rtree_new(&rtree), "Unexpected rtree_new() failure"); assert_ptr_null(rtree_read(tsdn, &rtree, &rtree_ctx, PAGE, false), "rtree_read() should return NULL for empty tree"); rtree_delete(tsdn, &rtree); test_rtree = NULL; } TEST_END #define NTHREADS 8 #define MAX_NBITS 30 #define NITERS 1000 #define SEED 42 typedef struct { rtree_t rtree; uint32_t seed; } thd_start_arg_t; static void * thd_start(void *varg) { thd_start_arg_t *arg = (thd_start_arg_t *)varg; rtree_ctx_t rtree_ctx = RTREE_CTX_INITIALIZER; sfmt_t *sfmt; extent_t *extent; tsdn_t *tsdn; unsigned i; sfmt = init_gen_rand(arg->seed); extent = (extent_t *)malloc(sizeof(extent)); assert_ptr_not_null(extent, "Unexpected malloc() failure"); tsdn = tsdn_fetch(); for (i = 0; i < NITERS; i++) { uintptr_t key = (uintptr_t)(gen_rand64(sfmt) & ((ZU(1) << MAX_NBITS) - ZU(1))); if (i % 2 == 0) { rtree_leaf_elm_t *elm = rtree_leaf_elm_acquire(tsdn, &arg->rtree, &rtree_ctx, key, false, true); assert_ptr_not_null(elm, "Unexpected rtree_leaf_elm_acquire() failure"); rtree_leaf_elm_write_acquired(tsdn, &arg->rtree, elm, extent); rtree_leaf_elm_release(tsdn, &arg->rtree, elm); elm = rtree_leaf_elm_acquire(tsdn, &arg->rtree, &rtree_ctx, key, true, false); assert_ptr_not_null(elm, "Unexpected rtree_leaf_elm_acquire() failure"); rtree_leaf_elm_read_acquired(tsdn, &arg->rtree, elm); rtree_leaf_elm_release(tsdn, &arg->rtree, elm); } else { rtree_read(tsdn, &arg->rtree, &rtree_ctx, key, false); } } free(extent); fini_gen_rand(sfmt); return NULL; } TEST_BEGIN(test_rtree_concurrent) { thd_start_arg_t arg; thd_t thds[NTHREADS]; sfmt_t *sfmt; tsdn_t *tsdn; sfmt = init_gen_rand(SEED); tsdn = tsdn_fetch(); test_rtree = &arg.rtree; assert_false(rtree_new(&arg.rtree), "Unexpected rtree_new() failure"); arg.seed = gen_rand32(sfmt); for (unsigned i = 0; i < NTHREADS; i++) { thd_create(&thds[i], thd_start, (void *)&arg); } for (unsigned i = 0; i < NTHREADS; i++) { thd_join(thds[i], NULL); } rtree_delete(tsdn, &arg.rtree); test_rtree = NULL; fini_gen_rand(sfmt); } TEST_END #undef NTHREADS #undef NITERS #undef SEED TEST_BEGIN(test_rtree_extrema) { extent_t extent_a, extent_b; tsdn_t *tsdn; tsdn = tsdn_fetch(); rtree_t rtree; rtree_ctx_t rtree_ctx = RTREE_CTX_INITIALIZER; test_rtree = &rtree; assert_false(rtree_new(&rtree), "Unexpected rtree_new() failure"); assert_false(rtree_write(tsdn, &rtree, &rtree_ctx, PAGE, &extent_a), "Unexpected rtree_write() failure"); assert_ptr_eq(rtree_read(tsdn, &rtree, &rtree_ctx, PAGE, true), &extent_a, "rtree_read() should return previously set value"); assert_false(rtree_write(tsdn, &rtree, &rtree_ctx, ~((uintptr_t)0), &extent_b), "Unexpected rtree_write() failure"); assert_ptr_eq(rtree_read(tsdn, &rtree, &rtree_ctx, ~((uintptr_t)0), true), &extent_b, "rtree_read() should return previously set value"); rtree_delete(tsdn, &rtree); test_rtree = NULL; } TEST_END TEST_BEGIN(test_rtree_bits) { tsdn_t *tsdn = tsdn_fetch(); uintptr_t keys[] = {PAGE, PAGE + 1, PAGE + (((uintptr_t)1) << LG_PAGE) - 1}; extent_t extent; rtree_t rtree; rtree_ctx_t rtree_ctx = RTREE_CTX_INITIALIZER; test_rtree = &rtree; assert_false(rtree_new(&rtree), "Unexpected rtree_new() failure"); for (unsigned i = 0; i < sizeof(keys)/sizeof(uintptr_t); i++) { assert_false(rtree_write(tsdn, &rtree, &rtree_ctx, keys[i], &extent), "Unexpected rtree_write() failure"); for (unsigned j = 0; j < sizeof(keys)/sizeof(uintptr_t); j++) { assert_ptr_eq(rtree_read(tsdn, &rtree, &rtree_ctx, keys[j], true), &extent, "rtree_read() should return previously set " "value and ignore insignificant key bits; " "i=%u, j=%u, set key=%#"FMTxPTR", get " "key=%#"FMTxPTR, i, j, keys[i], keys[j]); } assert_ptr_null(rtree_read(tsdn, &rtree, &rtree_ctx, (((uintptr_t)2) << LG_PAGE), false), "Only leftmost rtree leaf should be set; i=%u", i); rtree_clear(tsdn, &rtree, &rtree_ctx, keys[i]); } rtree_delete(tsdn, &rtree); test_rtree = NULL; } TEST_END TEST_BEGIN(test_rtree_random) { #define NSET 16 #define SEED 42 sfmt_t *sfmt = init_gen_rand(SEED); tsdn_t *tsdn = tsdn_fetch(); uintptr_t keys[NSET]; extent_t extent; rtree_t rtree; rtree_ctx_t rtree_ctx = RTREE_CTX_INITIALIZER; test_rtree = &rtree; assert_false(rtree_new(&rtree), "Unexpected rtree_new() failure"); for (unsigned i = 0; i < NSET; i++) { keys[i] = (uintptr_t)gen_rand64(sfmt); rtree_leaf_elm_t *elm = rtree_leaf_elm_acquire(tsdn, &rtree, &rtree_ctx, keys[i], false, true); assert_ptr_not_null(elm, "Unexpected rtree_leaf_elm_acquire() failure"); rtree_leaf_elm_write_acquired(tsdn, &rtree, elm, &extent); rtree_leaf_elm_release(tsdn, &rtree, elm); assert_ptr_eq(rtree_read(tsdn, &rtree, &rtree_ctx, keys[i], true), &extent, "rtree_read() should return previously set value"); } for (unsigned i = 0; i < NSET; i++) { assert_ptr_eq(rtree_read(tsdn, &rtree, &rtree_ctx, keys[i], true), &extent, "rtree_read() should return previously set value, i=%u", i); } for (unsigned i = 0; i < NSET; i++) { rtree_clear(tsdn, &rtree, &rtree_ctx, keys[i]); assert_ptr_null(rtree_read(tsdn, &rtree, &rtree_ctx, keys[i], true), "rtree_read() should return previously set value"); } for (unsigned i = 0; i < NSET; i++) { assert_ptr_null(rtree_read(tsdn, &rtree, &rtree_ctx, keys[i], true), "rtree_read() should return previously set value"); } rtree_delete(tsdn, &rtree); test_rtree = NULL; fini_gen_rand(sfmt); #undef NSET #undef SEED } TEST_END int main(void) { rtree_node_alloc_orig = rtree_node_alloc; rtree_node_alloc = rtree_node_alloc_intercept; rtree_node_dalloc_orig = rtree_node_dalloc; rtree_node_dalloc = rtree_node_dalloc_intercept; rtree_leaf_alloc_orig = rtree_leaf_alloc; rtree_leaf_alloc = rtree_leaf_alloc_intercept; rtree_leaf_dalloc_orig = rtree_leaf_dalloc; rtree_leaf_dalloc = rtree_leaf_dalloc_intercept; test_rtree = NULL; return test( test_rtree_read_empty, test_rtree_concurrent, test_rtree_extrema, test_rtree_bits, test_rtree_random); }