#include "jemalloc/internal/jemalloc_preamble.h" #include "jemalloc/internal/jemalloc_internal_includes.h" #include "jemalloc/internal/assert.h" #include "jemalloc/internal/extent_mmap.h" #include "jemalloc/internal/mutex.h" #include "jemalloc/internal/sz.h" /* * In auto mode, arenas switch to huge pages for the base allocator on the * second base block. a0 switches to thp on the 5th block (after 20 megabytes * of metadata), since more metadata (e.g. rtree nodes) come from a0's base. */ #define BASE_AUTO_THP_THRESHOLD 2 #define BASE_AUTO_THP_THRESHOLD_A0 5 /******************************************************************************/ /* Data. */ static base_t *b0; metadata_thp_mode_t opt_metadata_thp = METADATA_THP_DEFAULT; const char *metadata_thp_mode_names[] = { "disabled", "auto", "always" }; /******************************************************************************/ static inline bool metadata_thp_madvise(void) { return (metadata_thp_enabled() && (init_system_thp_mode == thp_mode_default)); } static void * base_map(tsdn_t *tsdn, ehooks_t *ehooks, unsigned ind, size_t size) { void *addr; bool zero = true; bool commit = true; /* Use huge page sizes and alignment regardless of opt_metadata_thp. */ assert(size == HUGEPAGE_CEILING(size)); size_t alignment = HUGEPAGE; if (ehooks_are_default(ehooks)) { addr = extent_alloc_mmap(NULL, size, alignment, &zero, &commit); if (have_madvise_huge && addr) { pages_set_thp_state(addr, size); } } else { addr = ehooks_alloc(tsdn, ehooks, NULL, size, alignment, &zero, &commit); } return addr; } static void base_unmap(tsdn_t *tsdn, ehooks_t *ehooks, unsigned ind, void *addr, size_t size) { /* * Cascade through dalloc, decommit, purge_forced, and purge_lazy, * stopping at first success. This cascade is performed for consistency * with the cascade in extent_dalloc_wrapper() because an application's * custom hooks may not support e.g. dalloc. This function is only ever * called as a side effect of arena destruction, so although it might * seem pointless to do anything besides dalloc here, the application * may in fact want the end state of all associated virtual memory to be * in some consistent-but-allocated state. */ if (ehooks_are_default(ehooks)) { if (!extent_dalloc_mmap(addr, size)) { goto label_done; } if (!pages_decommit(addr, size)) { goto label_done; } if (!pages_purge_forced(addr, size)) { goto label_done; } if (!pages_purge_lazy(addr, size)) { goto label_done; } /* Nothing worked. This should never happen. */ not_reached(); } else { if (!ehooks_dalloc(tsdn, ehooks, addr, size, true)) { goto label_done; } if (!ehooks_decommit(tsdn, ehooks, addr, size, 0, size)) { goto label_done; } if (!ehooks_purge_forced(tsdn, ehooks, addr, size, 0, size)) { goto label_done; } if (!ehooks_purge_lazy(tsdn, ehooks, addr, size, 0, size)) { goto label_done; } /* Nothing worked. That's the application's problem. */ } label_done: if (metadata_thp_madvise()) { /* Set NOHUGEPAGE after unmap to avoid kernel defrag. */ assert(((uintptr_t)addr & HUGEPAGE_MASK) == 0 && (size & HUGEPAGE_MASK) == 0); pages_nohuge(addr, size); } } static void base_edata_init(size_t *extent_sn_next, edata_t *edata, void *addr, size_t size) { size_t sn; sn = *extent_sn_next; (*extent_sn_next)++; edata_binit(edata, addr, size, sn); } static size_t base_get_num_blocks(base_t *base, bool with_new_block) { base_block_t *b = base->blocks; assert(b != NULL); size_t n_blocks = with_new_block ? 2 : 1; while (b->next != NULL) { n_blocks++; b = b->next; } return n_blocks; } static void base_auto_thp_switch(tsdn_t *tsdn, base_t *base) { assert(opt_metadata_thp == metadata_thp_auto); malloc_mutex_assert_owner(tsdn, &base->mtx); if (base->auto_thp_switched) { return; } /* Called when adding a new block. */ bool should_switch; if (base_ind_get(base) != 0) { should_switch = (base_get_num_blocks(base, true) == BASE_AUTO_THP_THRESHOLD); } else { should_switch = (base_get_num_blocks(base, true) == BASE_AUTO_THP_THRESHOLD_A0); } if (!should_switch) { return; } base->auto_thp_switched = true; assert(!config_stats || base->n_thp == 0); /* Make the initial blocks THP lazily. */ base_block_t *block = base->blocks; while (block != NULL) { assert((block->size & HUGEPAGE_MASK) == 0); pages_huge(block, block->size); if (config_stats) { base->n_thp += HUGEPAGE_CEILING(block->size - edata_bsize_get(&block->edata)) >> LG_HUGEPAGE; } block = block->next; assert(block == NULL || (base_ind_get(base) == 0)); } } static void * base_extent_bump_alloc_helper(edata_t *edata, size_t *gap_size, size_t size, size_t alignment) { void *ret; assert(alignment == ALIGNMENT_CEILING(alignment, QUANTUM)); assert(size == ALIGNMENT_CEILING(size, alignment)); *gap_size = ALIGNMENT_CEILING((uintptr_t)edata_addr_get(edata), alignment) - (uintptr_t)edata_addr_get(edata); ret = (void *)((uintptr_t)edata_addr_get(edata) + *gap_size); assert(edata_bsize_get(edata) >= *gap_size + size); edata_binit(edata, (void *)((uintptr_t)edata_addr_get(edata) + *gap_size + size), edata_bsize_get(edata) - *gap_size - size, edata_sn_get(edata)); return ret; } static void base_extent_bump_alloc_post(base_t *base, edata_t *edata, size_t gap_size, void *addr, size_t size) { if (edata_bsize_get(edata) > 0) { /* * Compute the index for the largest size class that does not * exceed extent's size. */ szind_t index_floor = sz_size2index(edata_bsize_get(edata) + 1) - 1; edata_heap_insert(&base->avail[index_floor], edata); } if (config_stats) { base->allocated += size; /* * Add one PAGE to base_resident for every page boundary that is * crossed by the new allocation. Adjust n_thp similarly when * metadata_thp is enabled. */ base->resident += PAGE_CEILING((uintptr_t)addr + size) - PAGE_CEILING((uintptr_t)addr - gap_size); assert(base->allocated <= base->resident); assert(base->resident <= base->mapped); if (metadata_thp_madvise() && (opt_metadata_thp == metadata_thp_always || base->auto_thp_switched)) { base->n_thp += (HUGEPAGE_CEILING((uintptr_t)addr + size) - HUGEPAGE_CEILING((uintptr_t)addr - gap_size)) >> LG_HUGEPAGE; assert(base->mapped >= base->n_thp << LG_HUGEPAGE); } } } static void * base_extent_bump_alloc(base_t *base, edata_t *edata, size_t size, size_t alignment) { void *ret; size_t gap_size; ret = base_extent_bump_alloc_helper(edata, &gap_size, size, alignment); base_extent_bump_alloc_post(base, edata, gap_size, ret, size); return ret; } /* * Allocate a block of virtual memory that is large enough to start with a * base_block_t header, followed by an object of specified size and alignment. * On success a pointer to the initialized base_block_t header is returned. */ static base_block_t * base_block_alloc(tsdn_t *tsdn, base_t *base, ehooks_t *ehooks, unsigned ind, pszind_t *pind_last, size_t *extent_sn_next, size_t size, size_t alignment) { alignment = ALIGNMENT_CEILING(alignment, QUANTUM); size_t usize = ALIGNMENT_CEILING(size, alignment); size_t header_size = sizeof(base_block_t); size_t gap_size = ALIGNMENT_CEILING(header_size, alignment) - header_size; /* * Create increasingly larger blocks in order to limit the total number * of disjoint virtual memory ranges. Choose the next size in the page * size class series (skipping size classes that are not a multiple of * HUGEPAGE), or a size large enough to satisfy the requested size and * alignment, whichever is larger. */ size_t min_block_size = HUGEPAGE_CEILING(sz_psz2u(header_size + gap_size + usize)); pszind_t pind_next = (*pind_last + 1 < sz_psz2ind(SC_LARGE_MAXCLASS)) ? *pind_last + 1 : *pind_last; size_t next_block_size = HUGEPAGE_CEILING(sz_pind2sz(pind_next)); size_t block_size = (min_block_size > next_block_size) ? min_block_size : next_block_size; base_block_t *block = (base_block_t *)base_map(tsdn, ehooks, ind, block_size); if (block == NULL) { return NULL; } if (metadata_thp_madvise()) { void *addr = (void *)block; assert(((uintptr_t)addr & HUGEPAGE_MASK) == 0 && (block_size & HUGEPAGE_MASK) == 0); if (opt_metadata_thp == metadata_thp_always) { pages_huge(addr, block_size); } else if (opt_metadata_thp == metadata_thp_auto && base != NULL) { /* base != NULL indicates this is not a new base. */ malloc_mutex_lock(tsdn, &base->mtx); base_auto_thp_switch(tsdn, base); if (base->auto_thp_switched) { pages_huge(addr, block_size); } malloc_mutex_unlock(tsdn, &base->mtx); } } *pind_last = sz_psz2ind(block_size); block->size = block_size; block->next = NULL; assert(block_size >= header_size); base_edata_init(extent_sn_next, &block->edata, (void *)((uintptr_t)block + header_size), block_size - header_size); return block; } /* * Allocate an extent that is at least as large as specified size, with * specified alignment. */ static edata_t * base_extent_alloc(tsdn_t *tsdn, base_t *base, size_t size, size_t alignment) { malloc_mutex_assert_owner(tsdn, &base->mtx); ehooks_t *ehooks = base_ehooks_get(base); /* * Drop mutex during base_block_alloc(), because an extent hook will be * called. */ malloc_mutex_unlock(tsdn, &base->mtx); base_block_t *block = base_block_alloc(tsdn, base, ehooks, base_ind_get(base), &base->pind_last, &base->extent_sn_next, size, alignment); malloc_mutex_lock(tsdn, &base->mtx); if (block == NULL) { return NULL; } block->next = base->blocks; base->blocks = block; if (config_stats) { base->allocated += sizeof(base_block_t); base->resident += PAGE_CEILING(sizeof(base_block_t)); base->mapped += block->size; if (metadata_thp_madvise() && !(opt_metadata_thp == metadata_thp_auto && !base->auto_thp_switched)) { assert(base->n_thp > 0); base->n_thp += HUGEPAGE_CEILING(sizeof(base_block_t)) >> LG_HUGEPAGE; } assert(base->allocated <= base->resident); assert(base->resident <= base->mapped); assert(base->n_thp << LG_HUGEPAGE <= base->mapped); } return &block->edata; } base_t * b0get(void) { return b0; } base_t * base_new(tsdn_t *tsdn, unsigned ind, const extent_hooks_t *extent_hooks) { pszind_t pind_last = 0; size_t extent_sn_next = 0; /* * The base will contain the ehooks eventually, but it itself is * allocated using them. So we use some stack ehooks to bootstrap its * memory, and then initialize the ehooks within the base_t. */ ehooks_t fake_ehooks; ehooks_init(&fake_ehooks, (extent_hooks_t *)extent_hooks, ind); base_block_t *block = base_block_alloc(tsdn, NULL, &fake_ehooks, ind, &pind_last, &extent_sn_next, sizeof(base_t), QUANTUM); if (block == NULL) { return NULL; } size_t gap_size; size_t base_alignment = CACHELINE; size_t base_size = ALIGNMENT_CEILING(sizeof(base_t), base_alignment); base_t *base = (base_t *)base_extent_bump_alloc_helper(&block->edata, &gap_size, base_size, base_alignment); ehooks_init(&base->ehooks, (extent_hooks_t *)extent_hooks, ind); if (malloc_mutex_init(&base->mtx, "base", WITNESS_RANK_BASE, malloc_mutex_rank_exclusive)) { base_unmap(tsdn, &fake_ehooks, ind, block, block->size); return NULL; } base->pind_last = pind_last; base->extent_sn_next = extent_sn_next; base->blocks = block; base->auto_thp_switched = false; for (szind_t i = 0; i < SC_NSIZES; i++) { edata_heap_new(&base->avail[i]); } if (config_stats) { base->allocated = sizeof(base_block_t); base->resident = PAGE_CEILING(sizeof(base_block_t)); base->mapped = block->size; base->n_thp = (opt_metadata_thp == metadata_thp_always) && metadata_thp_madvise() ? HUGEPAGE_CEILING(sizeof(base_block_t)) >> LG_HUGEPAGE : 0; assert(base->allocated <= base->resident); assert(base->resident <= base->mapped); assert(base->n_thp << LG_HUGEPAGE <= base->mapped); } base_extent_bump_alloc_post(base, &block->edata, gap_size, base, base_size); return base; } void base_delete(tsdn_t *tsdn, base_t *base) { ehooks_t *ehooks = base_ehooks_get(base); base_block_t *next = base->blocks; do { base_block_t *block = next; next = block->next; base_unmap(tsdn, ehooks, base_ind_get(base), block, block->size); } while (next != NULL); } ehooks_t * base_ehooks_get(base_t *base) { return &base->ehooks; } extent_hooks_t * base_extent_hooks_set(base_t *base, extent_hooks_t *extent_hooks) { extent_hooks_t *old_extent_hooks = ehooks_get_extent_hooks_ptr(&base->ehooks); ehooks_init(&base->ehooks, extent_hooks, ehooks_ind_get(&base->ehooks)); return old_extent_hooks; } static void * base_alloc_impl(tsdn_t *tsdn, base_t *base, size_t size, size_t alignment, size_t *esn) { alignment = QUANTUM_CEILING(alignment); size_t usize = ALIGNMENT_CEILING(size, alignment); size_t asize = usize + alignment - QUANTUM; edata_t *edata = NULL; malloc_mutex_lock(tsdn, &base->mtx); for (szind_t i = sz_size2index(asize); i < SC_NSIZES; i++) { edata = edata_heap_remove_first(&base->avail[i]); if (edata != NULL) { /* Use existing space. */ break; } } if (edata == NULL) { /* Try to allocate more space. */ edata = base_extent_alloc(tsdn, base, usize, alignment); } void *ret; if (edata == NULL) { ret = NULL; goto label_return; } ret = base_extent_bump_alloc(base, edata, usize, alignment); if (esn != NULL) { *esn = edata_sn_get(edata); } label_return: malloc_mutex_unlock(tsdn, &base->mtx); return ret; } /* * base_alloc() returns zeroed memory, which is always demand-zeroed for the * auto arenas, in order to make multi-page sparse data structures such as radix * tree nodes efficient with respect to physical memory usage. Upon success a * pointer to at least size bytes with specified alignment is returned. Note * that size is rounded up to the nearest multiple of alignment to avoid false * sharing. */ void * base_alloc(tsdn_t *tsdn, base_t *base, size_t size, size_t alignment) { return base_alloc_impl(tsdn, base, size, alignment, NULL); } edata_t * base_alloc_edata(tsdn_t *tsdn, base_t *base) { size_t esn; edata_t *edata = base_alloc_impl(tsdn, base, sizeof(edata_t), CACHELINE, &esn); if (edata == NULL) { return NULL; } edata_arena_ind_set(edata, ehooks_ind_get(&base->ehooks)); edata_esn_set(edata, esn); return edata; } void base_stats_get(tsdn_t *tsdn, base_t *base, size_t *allocated, size_t *resident, size_t *mapped, size_t *n_thp) { cassert(config_stats); malloc_mutex_lock(tsdn, &base->mtx); assert(base->allocated <= base->resident); assert(base->resident <= base->mapped); *allocated = base->allocated; *resident = base->resident; *mapped = base->mapped; *n_thp = base->n_thp; malloc_mutex_unlock(tsdn, &base->mtx); } void base_prefork(tsdn_t *tsdn, base_t *base) { malloc_mutex_prefork(tsdn, &base->mtx); } void base_postfork_parent(tsdn_t *tsdn, base_t *base) { malloc_mutex_postfork_parent(tsdn, &base->mtx); } void base_postfork_child(tsdn_t *tsdn, base_t *base) { malloc_mutex_postfork_child(tsdn, &base->mtx); } bool base_boot(tsdn_t *tsdn) { b0 = base_new(tsdn, 0, (extent_hooks_t *)&ehooks_default_extent_hooks); return (b0 == NULL); }