#ifndef JEMALLOC_INTERNAL_INLINES_A_H #define JEMALLOC_INTERNAL_INLINES_A_H #include "jemalloc/internal/atomic.h" #ifndef JEMALLOC_ENABLE_INLINE pszind_t psz2ind(size_t psz); size_t pind2sz_compute(pszind_t pind); size_t pind2sz_lookup(pszind_t pind); size_t pind2sz(pszind_t pind); size_t psz2u(size_t psz); szind_t size2index_compute(size_t size); szind_t size2index_lookup(size_t size); szind_t size2index(size_t size); size_t index2size_compute(szind_t index); size_t index2size_lookup(szind_t index); size_t index2size(szind_t index); size_t s2u_compute(size_t size); size_t s2u_lookup(size_t size); size_t s2u(size_t size); size_t sa2u(size_t size, size_t alignment); arena_t *arena_choose_impl(tsd_t *tsd, arena_t *arena, bool internal); arena_t *arena_choose(tsd_t *tsd, arena_t *arena); arena_t *arena_ichoose(tsd_t *tsd, arena_t *arena); arena_tdata_t *arena_tdata_get(tsd_t *tsd, unsigned ind, bool refresh_if_missing); arena_t *arena_get(tsdn_t *tsdn, unsigned ind, bool init_if_missing); ticker_t *decay_ticker_get(tsd_t *tsd, unsigned ind); bool tcache_available(tsd_t *tsd); tcache_bin_t *tcache_small_bin_get(tcache_t *tcache, szind_t binind); tcache_bin_t *tcache_large_bin_get(tcache_t *tcache, szind_t binind); tcache_t *tcache_get(tsd_t *tsd); malloc_cpuid_t malloc_getcpu(void); unsigned percpu_arena_choose(void); unsigned percpu_arena_ind_limit(void); #endif #if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_C_)) JEMALLOC_ALWAYS_INLINE pszind_t psz2ind(size_t psz) { if (unlikely(psz > LARGE_MAXCLASS)) { return NPSIZES; } { pszind_t x = lg_floor((psz<<1)-1); pszind_t shift = (x < LG_SIZE_CLASS_GROUP + LG_PAGE) ? 0 : x - (LG_SIZE_CLASS_GROUP + LG_PAGE); pszind_t grp = shift << LG_SIZE_CLASS_GROUP; pszind_t lg_delta = (x < LG_SIZE_CLASS_GROUP + LG_PAGE + 1) ? LG_PAGE : x - LG_SIZE_CLASS_GROUP - 1; size_t delta_inverse_mask = ZD(-1) << lg_delta; pszind_t mod = ((((psz-1) & delta_inverse_mask) >> lg_delta)) & ((ZU(1) << LG_SIZE_CLASS_GROUP) - 1); pszind_t ind = grp + mod; return ind; } } JEMALLOC_INLINE size_t pind2sz_compute(pszind_t pind) { if (unlikely(pind == NPSIZES)) { return LARGE_MAXCLASS + PAGE; } { size_t grp = pind >> LG_SIZE_CLASS_GROUP; size_t mod = pind & ((ZU(1) << LG_SIZE_CLASS_GROUP) - 1); size_t grp_size_mask = ~((!!grp)-1); size_t grp_size = ((ZU(1) << (LG_PAGE + (LG_SIZE_CLASS_GROUP-1))) << grp) & grp_size_mask; size_t shift = (grp == 0) ? 1 : grp; size_t lg_delta = shift + (LG_PAGE-1); size_t mod_size = (mod+1) << lg_delta; size_t sz = grp_size + mod_size; return sz; } } JEMALLOC_INLINE size_t pind2sz_lookup(pszind_t pind) { size_t ret = (size_t)pind2sz_tab[pind]; assert(ret == pind2sz_compute(pind)); return ret; } JEMALLOC_INLINE size_t pind2sz(pszind_t pind) { assert(pind < NPSIZES+1); return pind2sz_lookup(pind); } JEMALLOC_INLINE size_t psz2u(size_t psz) { if (unlikely(psz > LARGE_MAXCLASS)) { return LARGE_MAXCLASS + PAGE; } { size_t x = lg_floor((psz<<1)-1); size_t lg_delta = (x < LG_SIZE_CLASS_GROUP + LG_PAGE + 1) ? LG_PAGE : x - LG_SIZE_CLASS_GROUP - 1; size_t delta = ZU(1) << lg_delta; size_t delta_mask = delta - 1; size_t usize = (psz + delta_mask) & ~delta_mask; return usize; } } JEMALLOC_INLINE szind_t size2index_compute(size_t size) { if (unlikely(size > LARGE_MAXCLASS)) { return NSIZES; } #if (NTBINS != 0) if (size <= (ZU(1) << LG_TINY_MAXCLASS)) { szind_t lg_tmin = LG_TINY_MAXCLASS - NTBINS + 1; szind_t lg_ceil = lg_floor(pow2_ceil_zu(size)); return (lg_ceil < lg_tmin ? 0 : lg_ceil - lg_tmin); } #endif { szind_t x = lg_floor((size<<1)-1); szind_t shift = (x < LG_SIZE_CLASS_GROUP + LG_QUANTUM) ? 0 : x - (LG_SIZE_CLASS_GROUP + LG_QUANTUM); szind_t grp = shift << LG_SIZE_CLASS_GROUP; szind_t lg_delta = (x < LG_SIZE_CLASS_GROUP + LG_QUANTUM + 1) ? LG_QUANTUM : x - LG_SIZE_CLASS_GROUP - 1; size_t delta_inverse_mask = ZD(-1) << lg_delta; szind_t mod = ((((size-1) & delta_inverse_mask) >> lg_delta)) & ((ZU(1) << LG_SIZE_CLASS_GROUP) - 1); szind_t index = NTBINS + grp + mod; return index; } } JEMALLOC_ALWAYS_INLINE szind_t size2index_lookup(size_t size) { assert(size <= LOOKUP_MAXCLASS); { szind_t ret = (size2index_tab[(size-1) >> LG_TINY_MIN]); assert(ret == size2index_compute(size)); return ret; } } JEMALLOC_ALWAYS_INLINE szind_t size2index(size_t size) { assert(size > 0); if (likely(size <= LOOKUP_MAXCLASS)) { return size2index_lookup(size); } return size2index_compute(size); } JEMALLOC_INLINE size_t index2size_compute(szind_t index) { #if (NTBINS > 0) if (index < NTBINS) { return (ZU(1) << (LG_TINY_MAXCLASS - NTBINS + 1 + index)); } #endif { size_t reduced_index = index - NTBINS; size_t grp = reduced_index >> LG_SIZE_CLASS_GROUP; size_t mod = reduced_index & ((ZU(1) << LG_SIZE_CLASS_GROUP) - 1); size_t grp_size_mask = ~((!!grp)-1); size_t grp_size = ((ZU(1) << (LG_QUANTUM + (LG_SIZE_CLASS_GROUP-1))) << grp) & grp_size_mask; size_t shift = (grp == 0) ? 1 : grp; size_t lg_delta = shift + (LG_QUANTUM-1); size_t mod_size = (mod+1) << lg_delta; size_t usize = grp_size + mod_size; return usize; } } JEMALLOC_ALWAYS_INLINE size_t index2size_lookup(szind_t index) { size_t ret = (size_t)index2size_tab[index]; assert(ret == index2size_compute(index)); return ret; } JEMALLOC_ALWAYS_INLINE size_t index2size(szind_t index) { assert(index < NSIZES); return index2size_lookup(index); } JEMALLOC_ALWAYS_INLINE size_t s2u_compute(size_t size) { if (unlikely(size > LARGE_MAXCLASS)) { return 0; } #if (NTBINS > 0) if (size <= (ZU(1) << LG_TINY_MAXCLASS)) { size_t lg_tmin = LG_TINY_MAXCLASS - NTBINS + 1; size_t lg_ceil = lg_floor(pow2_ceil_zu(size)); return (lg_ceil < lg_tmin ? (ZU(1) << lg_tmin) : (ZU(1) << lg_ceil)); } #endif { size_t x = lg_floor((size<<1)-1); size_t lg_delta = (x < LG_SIZE_CLASS_GROUP + LG_QUANTUM + 1) ? LG_QUANTUM : x - LG_SIZE_CLASS_GROUP - 1; size_t delta = ZU(1) << lg_delta; size_t delta_mask = delta - 1; size_t usize = (size + delta_mask) & ~delta_mask; return usize; } } JEMALLOC_ALWAYS_INLINE size_t s2u_lookup(size_t size) { size_t ret = index2size_lookup(size2index_lookup(size)); assert(ret == s2u_compute(size)); return ret; } /* * Compute usable size that would result from allocating an object with the * specified size. */ JEMALLOC_ALWAYS_INLINE size_t s2u(size_t size) { assert(size > 0); if (likely(size <= LOOKUP_MAXCLASS)) { return s2u_lookup(size); } return s2u_compute(size); } /* * Compute usable size that would result from allocating an object with the * specified size and alignment. */ JEMALLOC_ALWAYS_INLINE size_t sa2u(size_t size, size_t alignment) { size_t usize; assert(alignment != 0 && ((alignment - 1) & alignment) == 0); /* Try for a small size class. */ if (size <= SMALL_MAXCLASS && alignment < PAGE) { /* * Round size up to the nearest multiple of alignment. * * This done, we can take advantage of the fact that for each * small size class, every object is aligned at the smallest * power of two that is non-zero in the base two representation * of the size. For example: * * Size | Base 2 | Minimum alignment * -----+----------+------------------ * 96 | 1100000 | 32 * 144 | 10100000 | 32 * 192 | 11000000 | 64 */ usize = s2u(ALIGNMENT_CEILING(size, alignment)); if (usize < LARGE_MINCLASS) { return usize; } } /* Large size class. Beware of overflow. */ if (unlikely(alignment > LARGE_MAXCLASS)) { return 0; } /* Make sure result is a large size class. */ if (size <= LARGE_MINCLASS) { usize = LARGE_MINCLASS; } else { usize = s2u(size); if (usize < size) { /* size_t overflow. */ return 0; } } /* * Calculate the multi-page mapping that large_palloc() would need in * order to guarantee the alignment. */ if (usize + large_pad + PAGE_CEILING(alignment) - PAGE < usize) { /* size_t overflow. */ return 0; } return usize; } JEMALLOC_ALWAYS_INLINE malloc_cpuid_t malloc_getcpu(void) { assert(have_percpu_arena); #if defined(JEMALLOC_HAVE_SCHED_GETCPU) return (malloc_cpuid_t)sched_getcpu(); #else not_reached(); return -1; #endif } /* Return the chosen arena index based on current cpu. */ JEMALLOC_ALWAYS_INLINE unsigned percpu_arena_choose(void) { unsigned arena_ind; assert(have_percpu_arena && (percpu_arena_mode != percpu_arena_disabled)); malloc_cpuid_t cpuid = malloc_getcpu(); assert(cpuid >= 0); if ((percpu_arena_mode == percpu_arena) || ((unsigned)cpuid < ncpus / 2)) { arena_ind = cpuid; } else { assert(percpu_arena_mode == per_phycpu_arena); /* Hyper threads on the same physical CPU share arena. */ arena_ind = cpuid - ncpus / 2; } return arena_ind; } /* Return the limit of percpu auto arena range, i.e. arenas[0...ind_limit). */ JEMALLOC_ALWAYS_INLINE unsigned percpu_arena_ind_limit(void) { assert(have_percpu_arena && (percpu_arena_mode != percpu_arena_disabled)); if (percpu_arena_mode == per_phycpu_arena && ncpus > 1) { if (ncpus % 2) { /* This likely means a misconfig. */ return ncpus / 2 + 1; } return ncpus / 2; } else { return ncpus; } } JEMALLOC_INLINE arena_tdata_t * arena_tdata_get(tsd_t *tsd, unsigned ind, bool refresh_if_missing) { arena_tdata_t *tdata; arena_tdata_t *arenas_tdata = tsd_arenas_tdata_get(tsd); if (unlikely(arenas_tdata == NULL)) { /* arenas_tdata hasn't been initialized yet. */ return arena_tdata_get_hard(tsd, ind); } if (unlikely(ind >= tsd_narenas_tdata_get(tsd))) { /* * ind is invalid, cache is old (too small), or tdata to be * initialized. */ return (refresh_if_missing ? arena_tdata_get_hard(tsd, ind) : NULL); } tdata = &arenas_tdata[ind]; if (likely(tdata != NULL) || !refresh_if_missing) { return tdata; } return arena_tdata_get_hard(tsd, ind); } JEMALLOC_INLINE arena_t * arena_get(tsdn_t *tsdn, unsigned ind, bool init_if_missing) { arena_t *ret; assert(ind <= MALLOCX_ARENA_MAX); ret = (arena_t *)atomic_load_p(&arenas[ind], ATOMIC_ACQUIRE); if (unlikely(ret == NULL)) { if (init_if_missing) { ret = arena_init(tsdn, ind, (extent_hooks_t *)&extent_hooks_default); } } return ret; } JEMALLOC_INLINE ticker_t * decay_ticker_get(tsd_t *tsd, unsigned ind) { arena_tdata_t *tdata; tdata = arena_tdata_get(tsd, ind, true); if (unlikely(tdata == NULL)) { return NULL; } return &tdata->decay_ticker; } JEMALLOC_ALWAYS_INLINE tcache_bin_t * tcache_small_bin_get(tcache_t *tcache, szind_t binind) { assert(binind < NBINS); return &tcache->tbins_small[binind]; } JEMALLOC_ALWAYS_INLINE tcache_bin_t * tcache_large_bin_get(tcache_t *tcache, szind_t binind) { assert(binind >= NBINS &&binind < nhbins); return &tcache->tbins_large[binind - NBINS]; } JEMALLOC_ALWAYS_INLINE bool tcache_available(tsd_t *tsd) { cassert(config_tcache); /* * Thread specific auto tcache might be unavailable if: 1) during tcache * initialization, or 2) disabled through thread.tcache.enabled mallctl * or config options. This check covers all cases. */ if (likely(tsd_tcache_enabled_get(tsd) == true)) { /* Associated arena == null implies tcache init in progress. */ if (tsd_tcachep_get(tsd)->arena != NULL) { assert(tcache_small_bin_get(tsd_tcachep_get(tsd), 0)->avail != NULL); } return true; } return false; } JEMALLOC_ALWAYS_INLINE tcache_t * tcache_get(tsd_t *tsd) { if (!config_tcache) { return NULL; } if (!tcache_available(tsd)) { return NULL; } return tsd_tcachep_get(tsd); } #endif #endif /* JEMALLOC_INTERNAL_INLINES_A_H */