/* ******************************************************************************* * Implementation of (2^1+,2) cuckoo hashing, where 2^1+ indicates that each * hash bucket contains 2^n cells, for n >= 1, and 2 indicates that two hash * functions are employed. The original cuckoo hashing algorithm was described * in: * * Pagh, R., F.F. Rodler (2004) Cuckoo Hashing. Journal of Algorithms * 51(2):122-144. * * Generalization of cuckoo hashing was discussed in: * * Erlingsson, U., M. Manasse, F. McSherry (2006) A cool and practical * alternative to traditional hash tables. In Proceedings of the 7th * Workshop on Distributed Data and Structures (WDAS'06), Santa Clara, CA, * January 2006. * * This implementation uses precisely two hash functions because that is the * fewest that can work, and supporting multiple hashes is an implementation * burden. Here is a reproduction of Figure 1 from Erlingsson et al. (2006) * that shows approximate expected maximum load factors for various * configurations: * * | #cells/bucket | * #hashes | 1 | 2 | 4 | 8 | * --------+-------+-------+-------+-------+ * 1 | 0.006 | 0.006 | 0.03 | 0.12 | * 2 | 0.49 | 0.86 |>0.93< |>0.96< | * 3 | 0.91 | 0.97 | 0.98 | 0.999 | * 4 | 0.97 | 0.99 | 0.999 | | * * The number of cells per bucket is chosen such that a bucket fits in one cache * line. So, on 32- and 64-bit systems, we use (8,2) and (4,2) cuckoo hashing, * respectively. * ******************************************************************************/ #define JEMALLOC_CKH_C_ #include "jemalloc/internal/jemalloc_internal.h" /******************************************************************************/ /* Function prototypes for non-inline static functions. */ static bool ckh_grow(ckh_t *ckh); static void ckh_shrink(ckh_t *ckh); /******************************************************************************/ /* * Search bucket for key and return the cell number if found; SIZE_T_MAX * otherwise. */ JEMALLOC_INLINE size_t ckh_bucket_search(ckh_t *ckh, size_t bucket, const void *key) { ckhc_t *cell; unsigned i; for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) { cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i]; if (cell->key != NULL && ckh->keycomp(key, cell->key)) return ((bucket << LG_CKH_BUCKET_CELLS) + i); } return (SIZE_T_MAX); } /* * Search table for key and return cell number if found; SIZE_T_MAX otherwise. */ JEMALLOC_INLINE size_t ckh_isearch(ckh_t *ckh, const void *key) { size_t hash1, hash2, bucket, cell; assert(ckh != NULL); ckh->hash(key, ckh->lg_curbuckets, &hash1, &hash2); /* Search primary bucket. */ bucket = hash1 & ((ZU(1) << ckh->lg_curbuckets) - 1); cell = ckh_bucket_search(ckh, bucket, key); if (cell != SIZE_T_MAX) return (cell); /* Search secondary bucket. */ bucket = hash2 & ((ZU(1) << ckh->lg_curbuckets) - 1); cell = ckh_bucket_search(ckh, bucket, key); return (cell); } JEMALLOC_INLINE bool ckh_try_bucket_insert(ckh_t *ckh, size_t bucket, const void *key, const void *data) { ckhc_t *cell; unsigned offset, i; /* * Cycle through the cells in the bucket, starting at a random position. * The randomness avoids worst-case search overhead as buckets fill up. */ prng32(offset, LG_CKH_BUCKET_CELLS, ckh->prng_state, CKH_A, CKH_C); for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) { cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + ((i + offset) & ((ZU(1) << LG_CKH_BUCKET_CELLS) - 1))]; if (cell->key == NULL) { cell->key = key; cell->data = data; ckh->count++; return (false); } } return (true); } /* * No space is available in bucket. Randomly evict an item, then try to find an * alternate location for that item. Iteratively repeat this * eviction/relocation procedure until either success or detection of an * eviction/relocation bucket cycle. */ JEMALLOC_INLINE bool ckh_evict_reloc_insert(ckh_t *ckh, size_t argbucket, void const **argkey, void const **argdata) { const void *key, *data, *tkey, *tdata; ckhc_t *cell; size_t hash1, hash2, bucket, tbucket; unsigned i; bucket = argbucket; key = *argkey; data = *argdata; while (true) { /* * Choose a random item within the bucket to evict. This is * critical to correct function, because without (eventually) * evicting all items within a bucket during iteration, it * would be possible to get stuck in an infinite loop if there * were an item for which both hashes indicated the same * bucket. */ prng32(i, LG_CKH_BUCKET_CELLS, ckh->prng_state, CKH_A, CKH_C); cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i]; assert(cell->key != NULL); /* Swap cell->{key,data} and {key,data} (evict). */ tkey = cell->key; tdata = cell->data; cell->key = key; cell->data = data; key = tkey; data = tdata; #ifdef CKH_COUNT ckh->nrelocs++; #endif /* Find the alternate bucket for the evicted item. */ ckh->hash(key, ckh->lg_curbuckets, &hash1, &hash2); tbucket = hash2 & ((ZU(1) << ckh->lg_curbuckets) - 1); if (tbucket == bucket) { tbucket = hash1 & ((ZU(1) << ckh->lg_curbuckets) - 1); /* * It may be that (tbucket == bucket) still, if the * item's hashes both indicate this bucket. However, * we are guaranteed to eventually escape this bucket * during iteration, assuming pseudo-random item * selection (true randomness would make infinite * looping a remote possibility). The reason we can * never get trapped forever is that there are two * cases: * * 1) This bucket == argbucket, so we will quickly * detect an eviction cycle and terminate. * 2) An item was evicted to this bucket from another, * which means that at least one item in this bucket * has hashes that indicate distinct buckets. */ } /* Check for a cycle. */ if (tbucket == argbucket) { *argkey = key; *argdata = data; return (true); } bucket = tbucket; if (ckh_try_bucket_insert(ckh, bucket, key, data) == false) return (false); } } JEMALLOC_INLINE bool ckh_try_insert(ckh_t *ckh, void const**argkey, void const**argdata) { size_t hash1, hash2, bucket; const void *key = *argkey; const void *data = *argdata; ckh->hash(key, ckh->lg_curbuckets, &hash1, &hash2); /* Try to insert in primary bucket. */ bucket = hash1 & ((ZU(1) << ckh->lg_curbuckets) - 1); if (ckh_try_bucket_insert(ckh, bucket, key, data) == false) return (false); /* Try to insert in secondary bucket. */ bucket = hash2 & ((ZU(1) << ckh->lg_curbuckets) - 1); if (ckh_try_bucket_insert(ckh, bucket, key, data) == false) return (false); /* * Try to find a place for this item via iterative eviction/relocation. */ return (ckh_evict_reloc_insert(ckh, bucket, argkey, argdata)); } /* * Try to rebuild the hash table from scratch by inserting all items from the * old table into the new. */ JEMALLOC_INLINE bool ckh_rebuild(ckh_t *ckh, ckhc_t *aTab) { size_t count, i, nins; const void *key, *data; count = ckh->count; ckh->count = 0; for (i = nins = 0; nins < count; i++) { if (aTab[i].key != NULL) { key = aTab[i].key; data = aTab[i].data; if (ckh_try_insert(ckh, &key, &data)) { ckh->count = count; return (true); } nins++; } } return (false); } static bool ckh_grow(ckh_t *ckh) { bool ret; ckhc_t *tab, *ttab; size_t lg_curcells; unsigned lg_prevbuckets; #ifdef CKH_COUNT ckh->ngrows++; #endif /* * It is possible (though unlikely, given well behaved hashes) that the * table will have to be doubled more than once in order to create a * usable table. */ lg_prevbuckets = ckh->lg_curbuckets; lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS; while (true) { size_t usize; lg_curcells++; usize = sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE, NULL); if (usize == 0) { ret = true; goto RETURN; } tab = (ckhc_t *)ipalloc(usize, CACHELINE, true); if (tab == NULL) { ret = true; goto RETURN; } /* Swap in new table. */ ttab = ckh->tab; ckh->tab = tab; tab = ttab; ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS; if (ckh_rebuild(ckh, tab) == false) { idalloc(tab); break; } /* Rebuilding failed, so back out partially rebuilt table. */ idalloc(ckh->tab); ckh->tab = tab; ckh->lg_curbuckets = lg_prevbuckets; } ret = false; RETURN: return (ret); } static void ckh_shrink(ckh_t *ckh) { ckhc_t *tab, *ttab; size_t lg_curcells, usize; unsigned lg_prevbuckets; /* * It is possible (though unlikely, given well behaved hashes) that the * table rebuild will fail. */ lg_prevbuckets = ckh->lg_curbuckets; lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS - 1; usize = sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE, NULL); if (usize == 0) return; tab = (ckhc_t *)ipalloc(usize, CACHELINE, true); if (tab == NULL) { /* * An OOM error isn't worth propagating, since it doesn't * prevent this or future operations from proceeding. */ return; } /* Swap in new table. */ ttab = ckh->tab; ckh->tab = tab; tab = ttab; ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS; if (ckh_rebuild(ckh, tab) == false) { idalloc(tab); #ifdef CKH_COUNT ckh->nshrinks++; #endif return; } /* Rebuilding failed, so back out partially rebuilt table. */ idalloc(ckh->tab); ckh->tab = tab; ckh->lg_curbuckets = lg_prevbuckets; #ifdef CKH_COUNT ckh->nshrinkfails++; #endif } bool ckh_new(ckh_t *ckh, size_t minitems, ckh_hash_t *hash, ckh_keycomp_t *keycomp) { bool ret; size_t mincells, usize; unsigned lg_mincells; assert(minitems > 0); assert(hash != NULL); assert(keycomp != NULL); #ifdef CKH_COUNT ckh->ngrows = 0; ckh->nshrinks = 0; ckh->nshrinkfails = 0; ckh->ninserts = 0; ckh->nrelocs = 0; #endif ckh->prng_state = 42; /* Value doesn't really matter. */ ckh->count = 0; /* * Find the minimum power of 2 that is large enough to fit aBaseCount * entries. We are using (2+,2) cuckoo hashing, which has an expected * maximum load factor of at least ~0.86, so 0.75 is a conservative load * factor that will typically allow 2^aLgMinItems to fit without ever * growing the table. */ assert(LG_CKH_BUCKET_CELLS > 0); mincells = ((minitems + (3 - (minitems % 3))) / 3) << 2; for (lg_mincells = LG_CKH_BUCKET_CELLS; (ZU(1) << lg_mincells) < mincells; lg_mincells++) ; /* Do nothing. */ ckh->lg_minbuckets = lg_mincells - LG_CKH_BUCKET_CELLS; ckh->lg_curbuckets = lg_mincells - LG_CKH_BUCKET_CELLS; ckh->hash = hash; ckh->keycomp = keycomp; usize = sa2u(sizeof(ckhc_t) << lg_mincells, CACHELINE, NULL); if (usize == 0) { ret = true; goto RETURN; } ckh->tab = (ckhc_t *)ipalloc(usize, CACHELINE, true); if (ckh->tab == NULL) { ret = true; goto RETURN; } ret = false; RETURN: return (ret); } void ckh_delete(ckh_t *ckh) { assert(ckh != NULL); #ifdef CKH_VERBOSE malloc_printf( "%s(%p): ngrows: %"PRIu64", nshrinks: %"PRIu64"," " nshrinkfails: %"PRIu64", ninserts: %"PRIu64"," " nrelocs: %"PRIu64"\n", __func__, ckh, (unsigned long long)ckh->ngrows, (unsigned long long)ckh->nshrinks, (unsigned long long)ckh->nshrinkfails, (unsigned long long)ckh->ninserts, (unsigned long long)ckh->nrelocs); #endif idalloc(ckh->tab); #ifdef JEMALLOC_DEBUG memset(ckh, 0x5a, sizeof(ckh_t)); #endif } size_t ckh_count(ckh_t *ckh) { assert(ckh != NULL); return (ckh->count); } bool ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data) { size_t i, ncells; for (i = *tabind, ncells = (ZU(1) << (ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS)); i < ncells; i++) { if (ckh->tab[i].key != NULL) { if (key != NULL) *key = (void *)ckh->tab[i].key; if (data != NULL) *data = (void *)ckh->tab[i].data; *tabind = i + 1; return (false); } } return (true); } bool ckh_insert(ckh_t *ckh, const void *key, const void *data) { bool ret; assert(ckh != NULL); assert(ckh_search(ckh, key, NULL, NULL)); #ifdef CKH_COUNT ckh->ninserts++; #endif while (ckh_try_insert(ckh, &key, &data)) { if (ckh_grow(ckh)) { ret = true; goto RETURN; } } ret = false; RETURN: return (ret); } bool ckh_remove(ckh_t *ckh, const void *searchkey, void **key, void **data) { size_t cell; assert(ckh != NULL); cell = ckh_isearch(ckh, searchkey); if (cell != SIZE_T_MAX) { if (key != NULL) *key = (void *)ckh->tab[cell].key; if (data != NULL) *data = (void *)ckh->tab[cell].data; ckh->tab[cell].key = NULL; ckh->tab[cell].data = NULL; /* Not necessary. */ ckh->count--; /* Try to halve the table if it is less than 1/4 full. */ if (ckh->count < (ZU(1) << (ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS - 2)) && ckh->lg_curbuckets > ckh->lg_minbuckets) { /* Ignore error due to OOM. */ ckh_shrink(ckh); } return (false); } return (true); } bool ckh_search(ckh_t *ckh, const void *searchkey, void **key, void **data) { size_t cell; assert(ckh != NULL); cell = ckh_isearch(ckh, searchkey); if (cell != SIZE_T_MAX) { if (key != NULL) *key = (void *)ckh->tab[cell].key; if (data != NULL) *data = (void *)ckh->tab[cell].data; return (false); } return (true); } void ckh_string_hash(const void *key, unsigned minbits, size_t *hash1, size_t *hash2) { size_t ret1, ret2; uint64_t h; assert(minbits <= 32 || (SIZEOF_PTR == 8 && minbits <= 64)); assert(hash1 != NULL); assert(hash2 != NULL); h = hash(key, strlen((const char *)key), UINT64_C(0x94122f335b332aea)); if (minbits <= 32) { /* * Avoid doing multiple hashes, since a single hash provides * enough bits. */ ret1 = h & ZU(0xffffffffU); ret2 = h >> 32; } else { ret1 = h; ret2 = hash(key, strlen((const char *)key), UINT64_C(0x8432a476666bbc13)); } *hash1 = ret1; *hash2 = ret2; } bool ckh_string_keycomp(const void *k1, const void *k2) { assert(k1 != NULL); assert(k2 != NULL); return (strcmp((char *)k1, (char *)k2) ? false : true); } void ckh_pointer_hash(const void *key, unsigned minbits, size_t *hash1, size_t *hash2) { size_t ret1, ret2; uint64_t h; union { const void *v; uint64_t i; } u; assert(minbits <= 32 || (SIZEOF_PTR == 8 && minbits <= 64)); assert(hash1 != NULL); assert(hash2 != NULL); assert(sizeof(u.v) == sizeof(u.i)); #if (LG_SIZEOF_PTR != LG_SIZEOF_INT) u.i = 0; #endif u.v = key; h = hash(&u.i, sizeof(u.i), UINT64_C(0xd983396e68886082)); if (minbits <= 32) { /* * Avoid doing multiple hashes, since a single hash provides * enough bits. */ ret1 = h & ZU(0xffffffffU); ret2 = h >> 32; } else { assert(SIZEOF_PTR == 8); ret1 = h; ret2 = hash(&u.i, sizeof(u.i), UINT64_C(0x5e2be9aff8709a5d)); } *hash1 = ret1; *hash2 = ret2; } bool ckh_pointer_keycomp(const void *k1, const void *k2) { return ((k1 == k2) ? true : false); }