#ifndef JEMALLOC_INTERNAL_PROF_INLINES_B_H #define JEMALLOC_INTERNAL_PROF_INLINES_B_H #include "jemalloc/internal/safety_check.h" #include "jemalloc/internal/sz.h" #include "jemalloc/internal/thread_event.h" JEMALLOC_ALWAYS_INLINE bool prof_gdump_get_unlocked(void) { /* * No locking is used when reading prof_gdump_val in the fast path, so * there are no guarantees regarding how long it will take for all * threads to notice state changes. */ return prof_gdump_val; } JEMALLOC_ALWAYS_INLINE prof_tdata_t * prof_tdata_get(tsd_t *tsd, bool create) { prof_tdata_t *tdata; cassert(config_prof); tdata = tsd_prof_tdata_get(tsd); if (create) { assert(tsd_reentrancy_level_get(tsd) == 0); if (unlikely(tdata == NULL)) { if (tsd_nominal(tsd)) { tdata = prof_tdata_init(tsd); tsd_prof_tdata_set(tsd, tdata); } } else if (unlikely(tdata->expired)) { tdata = prof_tdata_reinit(tsd, tdata); tsd_prof_tdata_set(tsd, tdata); } assert(tdata == NULL || tdata->attached); } return tdata; } JEMALLOC_ALWAYS_INLINE prof_tctx_t * prof_tctx_get(tsdn_t *tsdn, const void *ptr, alloc_ctx_t *alloc_ctx) { cassert(config_prof); assert(ptr != NULL); return arena_prof_tctx_get(tsdn, ptr, alloc_ctx); } JEMALLOC_ALWAYS_INLINE void prof_tctx_set(tsdn_t *tsdn, const void *ptr, size_t usize, alloc_ctx_t *alloc_ctx, prof_tctx_t *tctx) { cassert(config_prof); assert(ptr != NULL); arena_prof_tctx_set(tsdn, ptr, usize, alloc_ctx, tctx); } JEMALLOC_ALWAYS_INLINE void prof_tctx_reset(tsdn_t *tsdn, const void *ptr, prof_tctx_t *tctx) { cassert(config_prof); assert(ptr != NULL); arena_prof_tctx_reset(tsdn, ptr, tctx); } JEMALLOC_ALWAYS_INLINE nstime_t prof_alloc_time_get(tsdn_t *tsdn, const void *ptr) { cassert(config_prof); assert(ptr != NULL); return arena_prof_alloc_time_get(tsdn, ptr); } JEMALLOC_ALWAYS_INLINE void prof_alloc_time_set(tsdn_t *tsdn, const void *ptr, nstime_t t) { cassert(config_prof); assert(ptr != NULL); arena_prof_alloc_time_set(tsdn, ptr, t); } JEMALLOC_ALWAYS_INLINE bool prof_sample_accum_update(tsd_t *tsd, size_t usize, bool update, prof_tdata_t **tdata_out) { prof_tdata_t *tdata; cassert(config_prof); /* Fastpath: no need to load tdata */ if (likely(prof_sample_event_wait_get(tsd) > 0)) { return true; } if (tsd_reentrancy_level_get(tsd) > 0) { return true; } bool booted = prof_tdata_get(tsd, false); tdata = prof_tdata_get(tsd, true); if (unlikely((uintptr_t)tdata <= (uintptr_t)PROF_TDATA_STATE_MAX)) { tdata = NULL; } if (tdata_out != NULL) { *tdata_out = tdata; } if (unlikely(tdata == NULL)) { return true; } if (!booted) { /* * If this was the first creation of tdata, then it means that * the previous thread_event() relied on the wrong prof_sample * wait time, and that it should have relied on the new * prof_sample wait time just set by prof_tdata_get(), so we * now manually check again. * * If the check fails, then even though we relied on the wrong * prof_sample wait time, we're now actually in perfect shape, * in the sense that we can pretend that we have used the right * prof_sample wait time. * * If the check succeeds, then we are now in a tougher * situation, in the sense that we cannot pretend that we have * used the right prof_sample wait time. A straightforward * solution would be to fully roll back thread_event(), set the * right prof_sample wait time, and then redo thread_event(). * A simpler way, which is implemented below, is to just set a * new prof_sample wait time that is usize less, and do nothing * else. Strictly speaking, the thread event handler may end * up in a wrong state, since it has still recorded an event * whereas in reality there may be no event. However, the * difference in the wait time offsets the wrongly recorded * event, so that, functionally, the countdown to the next * event will behave exactly as if we have used the right * prof_sample wait time in the first place. */ uint64_t wait = prof_sample_event_wait_get(tsd); assert(wait > 0); if (usize < wait) { thread_prof_sample_event_update(tsd, wait - usize); return true; } } /* Compute new sample threshold. */ if (update) { prof_sample_threshold_update(tdata); } return !tdata->active; } JEMALLOC_ALWAYS_INLINE prof_tctx_t * prof_alloc_prep(tsd_t *tsd, size_t usize, bool prof_active, bool update) { prof_tctx_t *ret; prof_tdata_t *tdata; prof_bt_t bt; assert(usize == sz_s2u(usize)); if (!prof_active || likely(prof_sample_accum_update(tsd, usize, update, &tdata))) { ret = (prof_tctx_t *)(uintptr_t)1U; } else { bt_init(&bt, tdata->vec); prof_backtrace(tsd, &bt); ret = prof_lookup(tsd, &bt); } return ret; } JEMALLOC_ALWAYS_INLINE void prof_malloc(tsdn_t *tsdn, const void *ptr, size_t usize, alloc_ctx_t *alloc_ctx, prof_tctx_t *tctx) { cassert(config_prof); assert(ptr != NULL); assert(usize == isalloc(tsdn, ptr)); if (unlikely((uintptr_t)tctx > (uintptr_t)1U)) { prof_malloc_sample_object(tsdn, ptr, usize, tctx); } else { prof_tctx_set(tsdn, ptr, usize, alloc_ctx, (prof_tctx_t *)(uintptr_t)1U); } } JEMALLOC_ALWAYS_INLINE void prof_realloc(tsd_t *tsd, const void *ptr, size_t usize, prof_tctx_t *tctx, bool prof_active, bool updated, const void *old_ptr, size_t old_usize, prof_tctx_t *old_tctx) { bool sampled, old_sampled, moved; cassert(config_prof); assert(ptr != NULL || (uintptr_t)tctx <= (uintptr_t)1U); if (prof_active && !updated && ptr != NULL) { assert(usize == isalloc(tsd_tsdn(tsd), ptr)); if (prof_sample_accum_update(tsd, usize, true, NULL)) { /* * Don't sample. The usize passed to prof_alloc_prep() * was larger than what actually got allocated, so a * backtrace was captured for this allocation, even * though its actual usize was insufficient to cross the * sample threshold. */ prof_alloc_rollback(tsd, tctx, true); tctx = (prof_tctx_t *)(uintptr_t)1U; } } sampled = ((uintptr_t)tctx > (uintptr_t)1U); old_sampled = ((uintptr_t)old_tctx > (uintptr_t)1U); moved = (ptr != old_ptr); if (unlikely(sampled)) { prof_malloc_sample_object(tsd_tsdn(tsd), ptr, usize, tctx); } else if (moved) { prof_tctx_set(tsd_tsdn(tsd), ptr, usize, NULL, (prof_tctx_t *)(uintptr_t)1U); } else if (unlikely(old_sampled)) { /* * prof_tctx_set() would work for the !moved case as well, but * prof_tctx_reset() is slightly cheaper, and the proper thing * to do here in the presence of explicit knowledge re: moved * state. */ prof_tctx_reset(tsd_tsdn(tsd), ptr, tctx); } else { assert((uintptr_t)prof_tctx_get(tsd_tsdn(tsd), ptr, NULL) == (uintptr_t)1U); } /* * The prof_free_sampled_object() call must come after the * prof_malloc_sample_object() call, because tctx and old_tctx may be * the same, in which case reversing the call order could cause the tctx * to be prematurely destroyed as a side effect of momentarily zeroed * counters. */ if (unlikely(old_sampled)) { prof_free_sampled_object(tsd, ptr, old_usize, old_tctx); } } JEMALLOC_ALWAYS_INLINE void prof_free(tsd_t *tsd, const void *ptr, size_t usize, alloc_ctx_t *alloc_ctx) { prof_tctx_t *tctx = prof_tctx_get(tsd_tsdn(tsd), ptr, alloc_ctx); cassert(config_prof); assert(usize == isalloc(tsd_tsdn(tsd), ptr)); if (unlikely((uintptr_t)tctx > (uintptr_t)1U)) { prof_free_sampled_object(tsd, ptr, usize, tctx); } } #endif /* JEMALLOC_INTERNAL_PROF_INLINES_B_H */