#include #include #include #include #include #include #include #include #ifndef SIZE_T_MAX # define SIZE_T_MAX SIZE_MAX #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #define JEMALLOC_MANGLE #include "../jemalloc@install_suffix@.h" #ifdef JEMALLOC_LAZY_LOCK #include #endif #include "internal/rb.h" #include "internal/qr.h" #include "internal/ql.h" extern void (*JEMALLOC_P(malloc_message))(void *w4opaque, const char *p1, const char *p2, const char *p3, const char *p4); /* * Define a custom assert() in order to reduce the chances of deadlock during * assertion failure. */ #ifdef JEMALLOC_DEBUG # define assert(e) do { \ if (!(e)) { \ char line_buf[UMAX2S_BUFSIZE]; \ malloc_write4(": ", __FILE__, ":", \ umax2s(__LINE__, 10, line_buf)); \ malloc_write4(": Failed assertion: ", "\"", #e, \ "\"\n"); \ abort(); \ } \ } while (0) #else #define assert(e) #endif /* * jemalloc can conceptually be broken into components (arena, tcache, trace, * etc.), but there are circular dependencies that cannot be broken without * substantial performance degradation. In order to reduce the effect on * visual code flow, read the header files in multiple passes, with one of the * following cpp variables defined during each pass: * * JEMALLOC_H_TYPES : Preprocessor-defined constants and psuedo-opaque data * types. * JEMALLOC_H_STRUCTS : Data structures. * JEMALLOC_H_EXTERNS : Extern data declarations and function prototypes. * JEMALLOC_H_INLINES : Inline functions. */ /******************************************************************************/ #define JEMALLOC_H_TYPES #define ZU(z) ((size_t)z) #ifndef __DECONST # define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var)) #endif #ifdef JEMALLOC_DEBUG /* Disable inlining to make debugging easier. */ # define JEMALLOC_INLINE # define inline #else # define JEMALLOC_ENABLE_INLINE # define JEMALLOC_INLINE static inline #endif /* Size of stack-allocated buffer passed to strerror_r(). */ #define STRERROR_BUF 64 /* Minimum alignment of allocations is 2^LG_QUANTUM bytes. */ #ifdef __i386__ # define LG_QUANTUM 4 #endif #ifdef __ia64__ # define LG_QUANTUM 4 #endif #ifdef __alpha__ # define LG_QUANTUM 4 #endif #ifdef __sparc64__ # define LG_QUANTUM 4 #endif #if (defined(__amd64__) || defined(__x86_64__)) # define LG_QUANTUM 4 #endif #ifdef __arm__ # define LG_QUANTUM 3 #endif #ifdef __mips__ # define LG_QUANTUM 3 #endif #ifdef __powerpc__ # define LG_QUANTUM 4 #endif #ifdef __s390x__ # define LG_QUANTUM 4 #endif #define QUANTUM ((size_t)(1U << LG_QUANTUM)) #define QUANTUM_MASK (QUANTUM - 1) /* Return the smallest quantum multiple that is >= a. */ #define QUANTUM_CEILING(a) \ (((a) + QUANTUM_MASK) & ~QUANTUM_MASK) #define SIZEOF_PTR (1U << LG_SIZEOF_PTR) /* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */ #if (!defined(PIC) && !defined(NO_TLS)) # define NO_TLS #endif /* * Maximum size of L1 cache line. This is used to avoid cache line aliasing. * In addition, this controls the spacing of cacheline-spaced size classes. */ #define LG_CACHELINE 6 #define CACHELINE ((size_t)(1U << LG_CACHELINE)) #define CACHELINE_MASK (CACHELINE - 1) /* Return the smallest cacheline multiple that is >= s. */ #define CACHELINE_CEILING(s) \ (((s) + CACHELINE_MASK) & ~CACHELINE_MASK) /* * Page size. STATIC_PAGE_SHIFT is determined by the configure script. If * DYNAMIC_PAGE_SHIFT is enabled, only use the STATIC_PAGE_* macros where * compile-time values are required for the purposes of defining data * structures. */ #define STATIC_PAGE_SIZE ((size_t)(1U << STATIC_PAGE_SHIFT)) #define STATIC_PAGE_MASK ((size_t)(STATIC_PAGE_SIZE - 1)) #ifdef DYNAMIC_PAGE_SHIFT # define PAGE_SHIFT lg_pagesize # define PAGE_SIZE pagesize # define PAGE_MASK pagesize_mask #else # define PAGE_SHIFT STATIC_PAGE_SHIFT # define PAGE_SIZE STATIC_PAGE_SIZE # define PAGE_MASK STATIC_PAGE_MASK #endif /* Return the smallest pagesize multiple that is >= s. */ #define PAGE_CEILING(s) \ (((s) + PAGE_MASK) & ~PAGE_MASK) #include "internal/prn.h" #include "internal/mb.h" #include "internal/ckh.h" #include "internal/jemalloc_stats.h" #include "internal/jemalloc_ctl.h" #include "internal/jemalloc_mutex.h" #include "internal/jemalloc_extent.h" #include "internal/jemalloc_arena.h" #include "internal/jemalloc_base.h" #include "internal/jemalloc_chunk.h" #include "internal/jemalloc_huge.h" #include "internal/jemalloc_tcache.h" #include "internal/jemalloc_trace.h" #include "internal/hash.h" #include "internal/prof.h" #undef JEMALLOC_H_TYPES /******************************************************************************/ #define JEMALLOC_H_STRUCTS #include "internal/prn.h" #include "internal/mb.h" #include "internal/ckh.h" #include "internal/jemalloc_stats.h" #include "internal/jemalloc_ctl.h" #include "internal/jemalloc_mutex.h" #include "internal/jemalloc_extent.h" #include "internal/jemalloc_arena.h" #include "internal/jemalloc_base.h" #include "internal/jemalloc_chunk.h" #include "internal/jemalloc_huge.h" #include "internal/jemalloc_tcache.h" #include "internal/jemalloc_trace.h" #include "internal/hash.h" #include "internal/prof.h" #undef JEMALLOC_H_STRUCTS /******************************************************************************/ #define JEMALLOC_H_EXTERNS extern bool opt_abort; #ifdef JEMALLOC_FILL extern bool opt_junk; #endif #ifdef JEMALLOC_SYSV extern bool opt_sysv; #endif #ifdef JEMALLOC_XMALLOC extern bool opt_xmalloc; #endif #ifdef JEMALLOC_FILL extern bool opt_zero; #endif #ifdef DYNAMIC_PAGE_SHIFT extern size_t pagesize; extern size_t pagesize_mask; extern size_t lg_pagesize; #endif /* Number of CPUs. */ extern unsigned ncpus; extern malloc_mutex_t arenas_lock; /* Protects arenas initialization. */ #ifndef NO_TLS /* * Map of pthread_self() --> arenas[???], used for selecting an arena to use * for allocations. */ extern __thread arena_t *arenas_map JEMALLOC_ATTR(tls_model("initial-exec")); #endif /* * Arenas that are used to service external requests. Not all elements of the * arenas array are necessarily used; arenas are created lazily as needed. */ extern arena_t **arenas; extern unsigned narenas; arena_t *arenas_extend(unsigned ind); #ifndef NO_TLS arena_t *choose_arena_hard(void); #endif #include "internal/prn.h" #include "internal/mb.h" #include "internal/ckh.h" #include "internal/jemalloc_stats.h" #include "internal/jemalloc_ctl.h" #include "internal/jemalloc_mutex.h" #include "internal/jemalloc_extent.h" #include "internal/jemalloc_arena.h" #include "internal/jemalloc_base.h" #include "internal/jemalloc_chunk.h" #include "internal/jemalloc_huge.h" #include "internal/jemalloc_tcache.h" #include "internal/jemalloc_trace.h" #include "internal/hash.h" #include "internal/prof.h" #undef JEMALLOC_H_EXTERNS /******************************************************************************/ #define JEMALLOC_H_INLINES #include "internal/prn.h" #include "internal/mb.h" #include "internal/ckh.h" #include "internal/jemalloc_stats.h" #include "internal/jemalloc_ctl.h" #include "internal/jemalloc_mutex.h" #include "internal/jemalloc_extent.h" #include "internal/jemalloc_base.h" #include "internal/jemalloc_chunk.h" #include "internal/jemalloc_huge.h" #ifndef JEMALLOC_ENABLE_INLINE void malloc_write4(const char *p1, const char *p2, const char *p3, const char *p4); arena_t *choose_arena(void); #endif #if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_C_)) /* * Wrapper around malloc_message() that avoids the need for * JEMALLOC_P(malloc_message)(...) throughout the code. */ JEMALLOC_INLINE void malloc_write4(const char *p1, const char *p2, const char *p3, const char *p4) { JEMALLOC_P(malloc_message)(NULL, p1, p2, p3, p4); } /* * Choose an arena based on a per-thread value (fast-path code, calls slow-path * code if necessary). */ JEMALLOC_INLINE arena_t * choose_arena(void) { arena_t *ret; /* * We can only use TLS if this is a PIC library, since for the static * library version, libc's malloc is used by TLS allocation, which * introduces a bootstrapping issue. */ #ifndef NO_TLS ret = arenas_map; if (ret == NULL) { ret = choose_arena_hard(); assert(ret != NULL); } #else if (isthreaded && narenas > 1) { unsigned long ind; /* * Hash pthread_self() to one of the arenas. There is a prime * number of arenas, so this has a reasonable chance of * working. Even so, the hashing can be easily thwarted by * inconvenient pthread_self() values. Without specific * knowledge of how pthread_self() calculates values, we can't * easily do much better than this. */ ind = (unsigned long) pthread_self() % narenas; /* * Optimistially assume that arenas[ind] has been initialized. * At worst, we find out that some other thread has already * done so, after acquiring the lock in preparation. Note that * this lazy locking also has the effect of lazily forcing * cache coherency; without the lock acquisition, there's no * guarantee that modification of arenas[ind] by another thread * would be seen on this CPU for an arbitrary amount of time. * * In general, this approach to modifying a synchronized value * isn't a good idea, but in this case we only ever modify the * value once, so things work out well. */ ret = arenas[ind]; if (ret == NULL) { /* * Avoid races with another thread that may have already * initialized arenas[ind]. */ malloc_mutex_lock(&arenas_lock); if (arenas[ind] == NULL) ret = arenas_extend((unsigned)ind); else ret = arenas[ind]; malloc_mutex_unlock(&arenas_lock); } } else ret = arenas[0]; #endif assert(ret != NULL); return (ret); } #endif #include "internal/jemalloc_tcache.h" #include "internal/jemalloc_arena.h" #include "internal/jemalloc_trace.h" #include "internal/hash.h" #include "internal/prof.h" #ifndef JEMALLOC_ENABLE_INLINE void *imalloc(size_t size); void *icalloc(size_t size); void *ipalloc(size_t alignment, size_t size); size_t isalloc(const void *ptr); void *iralloc(void *ptr, size_t size); void idalloc(void *ptr); #endif #if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_C_)) JEMALLOC_INLINE void * imalloc(size_t size) { assert(size != 0); if (size <= arena_maxclass) return (arena_malloc(size, false)); else return (huge_malloc(size, false)); } JEMALLOC_INLINE void * icalloc(size_t size) { if (size <= arena_maxclass) return (arena_malloc(size, true)); else return (huge_malloc(size, true)); } JEMALLOC_INLINE void * ipalloc(size_t alignment, size_t size) { void *ret; size_t ceil_size; /* * Round size up to the nearest multiple of alignment. * * This done, we can take advantage of the fact that for each small * size class, every object is aligned at the smallest power of two * that is non-zero in the base two representation of the size. For * example: * * Size | Base 2 | Minimum alignment * -----+----------+------------------ * 96 | 1100000 | 32 * 144 | 10100000 | 32 * 192 | 11000000 | 64 * * Depending on runtime settings, it is possible that arena_malloc() * will further round up to a power of two, but that never causes * correctness issues. */ ceil_size = (size + (alignment - 1)) & (-alignment); /* * (ceil_size < size) protects against the combination of maximal * alignment and size greater than maximal alignment. */ if (ceil_size < size) { /* size_t overflow. */ return (NULL); } if (ceil_size <= PAGE_SIZE || (alignment <= PAGE_SIZE && ceil_size <= arena_maxclass)) ret = arena_malloc(ceil_size, false); else { size_t run_size; /* * We can't achieve subpage alignment, so round up alignment * permanently; it makes later calculations simpler. */ alignment = PAGE_CEILING(alignment); ceil_size = PAGE_CEILING(size); /* * (ceil_size < size) protects against very large sizes within * PAGE_SIZE of SIZE_T_MAX. * * (ceil_size + alignment < ceil_size) protects against the * combination of maximal alignment and ceil_size large enough * to cause overflow. This is similar to the first overflow * check above, but it needs to be repeated due to the new * ceil_size value, which may now be *equal* to maximal * alignment, whereas before we only detected overflow if the * original size was *greater* than maximal alignment. */ if (ceil_size < size || ceil_size + alignment < ceil_size) { /* size_t overflow. */ return (NULL); } /* * Calculate the size of the over-size run that arena_palloc() * would need to allocate in order to guarantee the alignment. */ if (ceil_size >= alignment) run_size = ceil_size + alignment - PAGE_SIZE; else { /* * It is possible that (alignment << 1) will cause * overflow, but it doesn't matter because we also * subtract PAGE_SIZE, which in the case of overflow * leaves us with a very large run_size. That causes * the first conditional below to fail, which means * that the bogus run_size value never gets used for * anything important. */ run_size = (alignment << 1) - PAGE_SIZE; } if (run_size <= arena_maxclass) { ret = arena_palloc(choose_arena(), alignment, ceil_size, run_size); } else if (alignment <= chunksize) ret = huge_malloc(ceil_size, false); else ret = huge_palloc(alignment, ceil_size); } assert(((uintptr_t)ret & (alignment - 1)) == 0); return (ret); } JEMALLOC_INLINE size_t isalloc(const void *ptr) { size_t ret; arena_chunk_t *chunk; assert(ptr != NULL); chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); if (chunk != ptr) { /* Region. */ assert(chunk->arena->magic == ARENA_MAGIC); ret = arena_salloc(ptr); } else ret = huge_salloc(ptr); return (ret); } JEMALLOC_INLINE void * iralloc(void *ptr, size_t size) { size_t oldsize; assert(ptr != NULL); assert(size != 0); oldsize = isalloc(ptr); if (size <= arena_maxclass) return (arena_ralloc(ptr, size, oldsize)); else return (huge_ralloc(ptr, size, oldsize)); } JEMALLOC_INLINE void idalloc(void *ptr) { arena_chunk_t *chunk; assert(ptr != NULL); chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); if (chunk != ptr) arena_dalloc(chunk->arena, chunk, ptr); else huge_dalloc(ptr); } #endif #undef JEMALLOC_H_INLINES /******************************************************************************/